
978-1-4673-2921-7/12/$31.00 c©2012 IEEE

A FPGA-based scalable architecture for URL legal
filtering in 100GbE networks

Jaime J. Garnica, Sergio Lopez-Buedo, Victor Lopez, Javier Aracil
High Performance Computing and Networking Group

Universidad Autonoma de Madrid
28049 Madrid, Spain

Email: jaime.garnica@uam.es

Jose Maria Gomez Hidalgo
Research and Development Department

Optenet
28230 Las Rozas, Madrid, Spain

jgomez@optenet.com

Abstract—Legal filtering is common practice in many countries
to avoid access to websites with criminal or violent content. This
kind of filtering is typically implemented at the edge routers of
ISP’s core networks, so it is mandatory to support very high bit
rates. This paper proposes a hardware-software solution based
on FPGAs, which scales up to 100 Gbps Ethernet. A FPGA-
based PCIe board equipped with two network interfaces is used
to intercept ISP traffic. The FPGA performs an initial filtering of
the packets whose destination is potentially forbidden, based on a
hash of the destination IP address. Filtered packets are sent to the
software application, which inspects them and decides if the URL
is actually forbidden or not. This two-level filtering allows for the
scalability of the proposed solution to very high bit rates, not only
because it simplifies FPGA design, but also because it significantly
reduces software load, since potentially forbidden destinations are
few. Additionally, this solution adds a minimal latency to most of
the packets, and also allows for updating filtering rules without
interrupting ISP traffic. The paper presents a proof-of-concept
10GbE implementation of the proposed architecture, as well as
an analysis of its scalability up to 100GbE.

I. INTRODUCTION

In most countries, ISP’s (Internet Service Providers) are re-
quested to provide legal URL filtering so that certain webpages
are not available to Internet users. Even in those countries with
strong civil liberties, URL filtering is used to prevent access
to webpages with criminal content: Child abuse, terrorism
apology, fraudulent activities, etc. When such criminal content
is detected, a legal process is started which ends by a judge
ruling that a given page is against the law and should not
be available to Internet users in the country. There are also
non-governmental organizations in charge of monitoring the
Internet and detecting pages with illegal contents. A good ex-
ample of such organizations is the Internet Watch Foundation
(IWF), a UK foundation in charge of detecting child abuse
content in the Internet. Lists provided by the IWF are used
in many countries to avoid users from accidentally stumbling
into such criminal images.

Legal URL filtering is usually implemented by ISP’s at
edge routers, where their backbone networks connects to
the Internet exchange points. Such location simplifies the
network architecture, since legal filtering is centralized in one
point. However, line rates at the backbone are very high,
in the order of Gbps. Packet filtering at such high rates is
not an easy task [1]. As it will be explained in Section

II, software-only solutions using commodity hardware are
not capable of achieving multi-gigabit per second rates. It
is therefore mandatory to explore other solutions, such as
network processors or FPGAs. In any case, the solution must
have low-cost and reconfigurability characteristics. The latter
is especially important, since illegal content is continually
being discovered. Another relevant feature to be taken into
account when selecting the target technology is latency. In an
ideal scenario, the filter should be transparent to non-filtered
traffic, adding a negligible latency.

Fortunately, the number of illegal URLs is very low, in the
order of thousands. Therefore, the fraction of traffic being
filtered will be negligible for a typical ISP. Taking advantage
of this fact, what we propose in this paper is a two-level
filtering. The first level of filtering is based on the destination
IP address. While this filtering is very easy to implement, it
does not completely solve the problem. For example, imagine
a shared-server web hosting service, where the same server
stores many perfectly legal pages as well as one with criminal
content. The destination IP will be the same for all pages,
legal an illegal, but only the illegal one should be filtered.
Therefore, URL filtering requires deep packet inspection to
check what is the requested URL in the GET HTTP command.
However, we can consider this deep packet inspection as
a second level of filtering. In the first level, based on the
destination IP address, we will have several false positives and
no false negatives, since we have a complete list of potentially
forbidden IP addresses. All packets whose destination IP
address is potentially forbidden, should go through a deep
packet inspection procedure in order to extract the requested
URL. But the number of packets going through this deep
packet inspection is very small, since the number of illegal
URLs is also very low. What we propose here is to implement
on a FPGA the first level of filtering, based on destination IP
address, and leave for the software the more complex second
level, which implies deep packet inspection. This approach
has two benefits: First, deep packet inspection is avoided at
the FPGA level, so the design is kept simple, favoring high
rates and the use of low-cost devices. Second, the amount of
traffic being processed by software is significantly reduced, so
it can be handled by a low-cost commodity microprocessor.
Furthermore, a FPGA-based solution has minimal latency,

Filtering
appliance

InternetUser

Security
management

server

Fig. 1. Solution overview

which cannot be attained with other technologies such as
network processors.

Fig. 1 shows a diagram of the proposed solution. It is
based on a FPGA board with two network interfaces, which
intercepts all traffic going from the ISP to the Internet. The
board has a memory where the list of potentially forbidden IP
addresses is stored. Actually, what is stored in the memory
is hash of the IP addresses, as it will justified in Section
II. Packets with a potentially forbidden destination are sent
to the host via the PCIe interface of the FPGA board. The
host inspects the destination URL of these packets in order to
decide if they have to be filtered or not. The host connects
to the security management application, which is running in
another server. This security management application is in
charge of updating the list of forbidden URLs. Section III
further details the architecture of the proposed solution. A 10
Gbps implementation is presented in Section IV, and Section
V presents its results as well as an analysis of its scalability
to 100 Gbps.

II. DESIGN DECISIONS

A. URL filtering methods

URL filtering methods are traditionally done by software-
only solutions based on commodity hardware [2], [3], [4].
The main advantages of these solutions are their flexibility
and ability to implement complex URL lookup methods. Such
methods are not only used by URL filtering applications,
but also by search engines [2], web caching [3] or content
distribution networks [4]. However, the response time of
software methods is in the order of milliseconds [5]. To
improve the performance of URL filtering methods, there are
four approaches: (1) improve the URL lookup algorithm [5],
(2) implement parallel algorithms to take advantage of multi-
core architectures [6], [7], (3) split the incoming traffic among
multiple machines and (4) reduce CPU consumption in the
packet capturing process with dedicated hardware [8].

The latter option, dedicated hardware, is gaining momentum
since it is very difficult to scale solutions based on commodity
hardware to multi-gigabit rates. Such dedicated hardware solu-
tions can be for example based on Network Processors, which

are many-core architectures specially designed for networking
applications (e.g. Cavium Octeon), or they can also be based
on FPGAs. The main advantages of FPGAs are its ability to
work at very high rates, reaching 100 Gbps, and a total control
over the latency, since designers exactly know the number of
cycles that it takes to process a packet.

B. FPGA-based solutions

Different FPGA-based solutions for packet classification at
very high rates have already been described. Usually, these
solutions are standalone designs working on a known set of
rules. This implies that to update the rule list it is necessary
to reconfigure the FPGA, thus interrupting network traffic.
Designs are usually based on Bloom Filters an Binary Tries.
Bloom Filters [9] use hash functions extracted from the set
of rules, which allow a for a very efficient O(1) lookup,
but with false positives. Binary Tries [1], [10] create binary
search trees from a set of rules using different types of
memories. Memories such as TCAMs have been used in
several approaches, but these memories are costly [11].

Our solution follows a different approach. Instead of cre-
ating a custom FPGA design based on a given set of rules,
the design is generic: Filtering is based on a memory, where
a bit is used per IP address to indicate whether it is “sus-
picious” or not. Therefore, changes in the ruleset are made
by just updating this memory, so there is no need for FPGA
reconfiguration and thus no traffic interruptions. As it was
stated in the introduction, IP address alone is not enough to
decide wether the packet should be filtered or not. This is
another distinguishing feature of our approach. We consider
a hardware-software solution, where a first level of filtering
is done in the FPGA, and the more complex deep packet
inspection is done in software. This is opposed to other
solutions where all processing is done at the FPGA.

C. Rule storage and lookup

According to our approach, the system requires 4 Gb
(232 bits) to store all the possible IPv4 addresses. Main
types of memories in FPGA boards are: BlockRAM, DDR,
and RLDRAM/QDR-II memories. Next, an analysis on the
suitability of each type of memories is presented.

1) Memories: First, BlockRAM capacity is just in the order
of MB, so it is not enough to store all IPv4 addresses.
Second, the storage capacity of DDR memories is high enough
to store all addresses, but they do not allow pipelining for
nonconsecutive accesses [12]. Each time the DDR memory
is accessed for a non-preloaded data, the whole page that
contains the data is loaded, which is a slow process. If the
search address order is known, delay is acceptable [10], but
unfortunately the incoming order of destination IP addresses
is not predictable. Finally, QDR-II and RLDRAM memories
provide a pipelined access. QDR-II timing is somewhat better,
with a 2-cycle read latency [13], while RLDRAM capacity is
typically higher. The size of these memories is continuously
increasing, reaching tens to hundreds of MB in modern boards.
However it is not enough to store all IPv4 addresses.

IP parsing Packet
FIFO IP parsing

Packet
Matching DMA Filtering

Request FIFO

Rule Updating
Module

Updating
Request FIFO

QDR-II
Manager Request FIFO Request FIFO

QDR
memories memories

Packet Filtering Module
QDR-II Access Module

Rule data flow
Packet flow

IP parsing Packet
FIFO IP parsing

Output IF1

Output IF0

DMA

Output IF0

Output IF1

Matching Request FIFO

Input IF1

Input IF0

PCI

Matching Matching Matching

Output IF0 Output IF0

Output IF1 Output IF1

Main modules Data flows

Fig. 2. Architecture design and data flows

2) Hash function: Since there are currently no memories
featuring both enough capacity and pipelined access, it is
necessary to find a different approach. The approach proposed
in this paper is to apply a hash function to the destination IP
address in order to reduce the number of bits and therefore
the storage requirements. Although this approach is very
efficient in terms of performance (O(1) complexity), it suffers
from false positives due to contention in the hash function
(several IP addresses having the same hash). However, as it
was stated in the introduction, our approach already suffers
from false positives: It is the software who should decide if
the connection should be forbidden or not by inspecting the
requested URL. Therefore, the use of hashes simply increases
the false positive rate, which is still very low, but allows for
using pipelined memories such as BRAM or QDR-II. Actually,
we found that the best tradeoff between speed and capacity
(false positives) occurred for QDR-II memories, since BRAMs
are too small and therefore the hash contention rate would be
unacceptable.

III. FPGA DESIGN

The software application has two main tasks: (1) update
the IP address list in the FPGA and (2) decide the action is
applied to each “suspicious” packet. The software application
keeps a list of the forbidden URLs, whose corresponding
IP addresses are known. These IP addresses are sent to the
FPGA via the PCIe. Let us remark that the updating process
is online, so there are no traffic cuts. Regarding the hardware
design, a FPGA-based board with two network interfaces
is used, so traffic in each direction of the network will
be filtered. From the operating system point of view, the
board works like a conventional Network Interface Card. The
FPGA is in charge of filtering just the “suspicious” packets
to the software application. The software application receives
these “suspicious” packets and it decides whether or not the
packets are finally blocked. This combined architecture yields
to software workload reduced, thanks to the filtering performed
by the FPGA card that only forwards a small fraction of
packets, which is compatible with the processing capacity of
the software.

The architecture of the design is divided into different
modules, as it can be seen in the Fig. 2. First, the main one
is the Packet Filtering Module, which inspects the fields of
every incoming packet and requests the rule list. After memory
modules answer the request, a forwarding action will be
applied to the packet. The forwarding of “suspicious” packets
to the software application is done via DMA. Second, the Rule
Updater Module carries out the rule updating requests that are
received from the software application. These updates are sent
via PCIe. The Rule Updating Module writes the updates in the
FPGA memories and reads the information that the software
application needs from the rule list status. Finally, the QDR-II
Access Module manages the access to the memories in order to
maintain the traffic processing when an update request arrives.
By keeping pending requests in FIFO modules, it allows to
access to both the filtering and updating processes without
traffic cuts. The following subsections describe in detail each
part of the architecture as well as other important issues such
us rule storing and memory access.

A. Packet Filtering Module

Filtering is the essential task of the design and it is carried
out by this module. The Packet Filtering Module contains
the Packet Matching Module, which receives the packet IP
addresses when incoming packets are parsed into the IP
Parsing Module. These IP addresses are hashed and then sent
as a query address to the QDR-II Manager Module. After
receiving an answer from the QDR-II, an output must be
selected depending on the matching result. The Packet Filter-
ing Module implements a pipeline to avoid packet dropping
caused by the memory access delay. After IP parsing inside
the corresponding module, Packet FIFO stores the packets that
are being checked. When the Packet Matching Module obtains
the matching result, it decides what is the correct output for
the packet (network or DMA).

Let us remark that the filtering process is done in both
network directions using two interfaces, which simultaneously
access the same rule tables. Therefore, the system must support
not only 149 Mpps for 100 Gbps Ethernet, but twice. For this
reason, the Packet Matching Module alternates and controls

Solución I: FrameLink FIFOs

Packet Filtering
Module

R
X

 D
M

A

RX NET

TX
 D

M
A

TX NET

Fig. 3. Packet flow contention

the searches for each one of the interfaces, while keeping
consistency in the pipeline. There are several solutions for this
contention problem, the simplest one is to create time slots
between the two network interfaces. However, other solutions
may be valid such as a priority request control. Since the
maximum clock frequency in QDR-II memories is very high,
up to 333 MHz, the same number of time slots can be reserved
for each interface. Equal time slots implies no more than 298
MHz or requests per second.

System delays must not stop the IP packet stream. To avoid
it, a packet FIFO system is implemented for frame contention
during the filtering process (Packet FIFO modules). As can
be seen in Fig. 3, the Packet FIFO system is used in the
Packet Filtering Module for each network interface, i.e. for
each direction. Packet drop occurs when the delay added by the
FPGA is higher than the packet reception interval. There are
three critical points in terms of delay. Packet filtering modules
present the highest delay, because they have to wait to the
memory response. Secondly, the DMA transmission rate is
lower than the network interface input rate. Thus, packets must
be stored temporally not to interrupt the pipeline. Finally, the
process of aggregating received packets from the DMA and
forwarded packets from the Packet Filtering Module also adds
a delay. To summarize, there are four packet FIFOs for each
network interface in the contention system. Let us remark that
there is a fifth packet FIFO inside the Packet Filtering Module
for each network interface (Fig. 2).

B. Rule Updating Module

The Rule Updating Module is in charge of updating the
rule list stored in the FPGA. It receives requests from the
application software via PCIe. Not only updating requests may
be received but also read requests of the current memory status
in order to maintain coherency between the software and the
hardware rule tables. As it happened with filtering requests,
update is managed by the QDR-II Access Module.

C. QDR-II Access Module

This module allows dynamically updating the list of rules
without interrupting the filtering process. QDR-II memories
are the only communication between the Rule Updating Mod-
ule and the Packet Filtering Module. To allow a shared access,
the QDR-II Manager Module decides when each module can
access the memories. Request FIFO modules store the requests

Packet
Parsing

IP
Hashing

Result
Waiting

Packet
Output

PCIe
Request

Request
Translate

PCIe
Result

Request
Selection

QDR-II
Request

QDR-II
Result

Translate

Waiting

Q
D

R
-II

A

cc
es

s
M

od
ul

e

R
ul

e
U

pd
at

in
g

M
od

ul
e

P
ac

ke
t

Fi
lte

rin
g

M
od

ul
e

Fig. 4. Pipeline schema

to allow the pipeline to work correctly. For each requester
module a Request FIFO system is integrated between the
requester and the QDR-II Manager Module.

The QDR-II memory access protocol is the Xilinx’ Memory
Interface Generator (MIG) protocol [14]. The MIG protocol re-
quires a full FIFO control and independent signals for reading
and writing. To keep the pipeline, a couple of Request FIFO
modules that store addresses and data for QDR-II requests and
responses are used. Requests received by these FIFO modules
use a proprietary Local Bus protocol because of simplicity.
Then, a translation is done by the Request FIFO modules to
the MIG protocol. Memory access clock is usually higher than
the system clock in order to achieve a higher access rate. These
clock domain exchange is also done by the Request FIFO
modules.

D. Pipelined module integration

QDR-II requests present a delay of tenths of nanoseconds
due to clock domain exchange and module communication.
Then, a pipeline design is required to achieve high rates with
no packet lost. Packet filtering and rule table updating must
have their own pipeline. Then, the QDR-II Access Module
must have another one to support them both. Fig. 4 shows the
pipeline design for the system. First, packet filtering pipeline
stages are: (1) to parse IP addresses from incoming packets,
(2) to hash the IP address and send the request to the Request
FIFO module, (3) to wait for the memory to response and (4)
to forward the frame to the network or the DMA. Second,
rule updating pipeline is organized in the following steps:
(1) to read the request from the PCIe, (2) to request the
Request FIFO module and (3, reading requests only) to wait
the response from the QDR-II memory. This third step is only
carried out when the rule updating system checks the rule list
status. Let us remark that the QDR-II Access Module pipeline
is shared by previous processes. QDR-II Access Module
pipeline is divided into: (1) selecting the proper requester
input, (2) sending the request to the memory and (3, read
only) returning the returned data to the respective requester.

IV. 10 GBPS IMPLEMENTATION

Nowadays, FPGA-based PCIe development boards provide
interfaces up to 10 Gbps. Therefore, the proof of concept has
been done at this rate. The reference system is the NetCope
Server from INVEA-Tech [15]. It is based on 64-bit CentOS
5.3 distribution of GNU/Linux. The FPGA board is a combo

of two cards connected to the server via PCIe. The first card is
equipped with a Xilinx FPGA XC5VLX155T Virtex-5. QDR-
II memory is divided into two CY7C1513AV18 devices, with
a size of 72 Mb each. The second card is equipped with two
XFP cages for the 10 Gbps network interfaces. NetCope Server
development provides a firmware that implements the network
interface management, PCIe access to INVEA’s proprietary
Local Bus and memory controllers (MIG). Our architecture is
placed on the customer application core.

In the one hand, the clock frequency at which the design
works is 125 MHz. The frames arrives at 128 bits per cycle.
The IP addresses are obtained at the second cycle. On the
other hand, the QDR-II memory works at 250 MHz. So it it
is necessary to change the clock domain of the requests by
means of the Request FIFO modules. Clock frequencies allow
simultaneous access from the updating and filtering processes
so that a memory access overflow is avoided. Since, the QDR-
II memories have a storage capacity of 72 Mbits (226 bits), a
26-bit addressing has been used. So that the hash used in this
project is a 32-bit CRC from which the least significant 26 bits
have been used. Therefore, there are up to 232−26 = 26 = 64
collisions per address because of the 6 bits of the hash that
are ignored.

The software that runs on the server communicates with
the card by means a driver that uses ioctls. Since the QDR-
II capacity is less than the 4 Gb required to store the whole
IPv4 addressing space, the driver maintains the whole blacklist
in software. Maintaining this whole list is necessary because
it might happen that two forbidden IP addresses share the
same hash. In that case, if one IP address is removed the
corresponding bit should continue to one in the QDR-II
memory, because there is still the other IP address forbidden.
In order to maintain this coherency, the whole IP address
blacklist must be stored in the driver.

V. RESULTS

100 Gbps requirements are calculated due to validate the
architecture at high line rates. To do that, both clock frequen-
cies and resource consumption are analyzed from the 10 Gbps
implementation. Then, they are extrapolated and validated at
100 Gbps for a state-of-art FGPA-based board.

A. 10 Gbps implementation

1) Clock frequencies: Since a request is done for every
single packet, to reach a high memory access rate is critical
in order to maintain the system performance. The maximum
packet rate in a 10 Gbps implementation is 14.8Mpps for
minimum-size packets [16]. It means that the clock frequency
for the memory access must be at least 14.8 MHz times the
number of interfaces (two in our case), that is, 29.6 MHz. Rule
updating rate is much lower than packet filtering requests and
it can be ignored. Then, memory modules working at 250
MHz and packet modules at 125 MHz is more than enough
to achieve the 10 Gbps.

TABLE I
RESOURCE USAGE FOR 128-BIT PACKET DATA WIDTH

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 25,803 97,280 26%

Number of Slice LUTs 31,330 97,280 32%

Number of bonded IOBs 487 640 76%

Number of BlockRAM/FIFO 103 212 48%

Number using BlockRAM only 53

Number using FIFO only 50

Total Memory used (KB) 3,438 7,632 45%

TABLE II
RESOURCE USAGE FOR 256-BIT PACKET DATA WIDTH

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 25,817 97,280 26%

Number of Slice LUTs 31,771 97,280 32%

Number of bonded IOBs 487 640 76%

Number of BlockRAM/FIFO 125 212 58%

Number using BlockRAM only 55

Number using FIFO only 70

Total Memory used (KB) 4,158 7,632 54%

2) Resource consumption: Since Request FIFOs are 32-bit
width and just a request is stored by packet, we focus on the
Packet FIFO system depicted in Fig. 3. Packet FIFOs are 128-
bit width, the same as network interfaces are. As data may be
kept every clock cycle, the minimum FIFO depth is equal to
number of clock cycles for the QDR-II access delay. Since
the access delay seen is less than 15 clock cycles, 512-word
depth is more than enough. The Design Summary provides
us the resource utilization as can be seen in Table I. The
map report shows the BlockRAMs used by the design and
FIFO cores are implemented by using BlockRAMs. In the
proof of concept, 48% of the available BlockRAMs are used.
Packet FIFO system used in the 10GbE implementation uses
10 packet FIFOs (5 for each interface). Each packet FIFO is
128b×512 = 64 Kb. Then, total size used is 64×10 = 640 Kb
of BlockRAM plus a minimal resources utilization by Request
FIFOs.

B. 100 Gbps implementation

1) Clock frequencies: For a 100 Gbps network, the max-
imum packet rate is 149 Mpps [17]. Then, the clock fre-
quency for the memory access must be higher than 298 MHz.
Fortunately, current QDR-II memories are able to achieve
frequencies up to 333 MHz. Data width provided by current
network interfaces cores is up to 256 bits per cycle. Then,
for the worst case of 60-byte packets, a new packet arrives
every two clock cycles. To achieve 149 Mpps per interface, the
system clock frequency must be also greater than 298 MHz.
Virtex-7 chip family achieve higher clock frequencies [18]. In
light of these results, we can conclude that in terms of clock
frequencies, a 100 Gbps network could be filtered in both
directions.

2) Resource consumption: FIFO data width increases to
256 bits, so the Packet FIFO system requires the double size
than the 10 Gbps one (1, 280 Kb). Table II shows the resource
utilization to support 256-bit data width. This architecture is
implemented for the same Virtex-5 FPGA chip. In this case,
the total memory used increase to 4,158 Kb, just the 54%
of the available, a lower percentage for better models such
as Virtex-7. Let us remark that a 100GbE implementation
increases the consumption of the FPGA resources. However,
BlockRAM memories used for Packet FIFOs are the most
critical limitation. Thanks to these results, we validate that the
proposed architecture supports the pipeline design in 100GbE
networks.

C. IPv6
For IPv6 networks, it is only necessary to change the hash

function to a 128-bit input. Since a bit is used for a IP address,
2128 bits is the size of the entire set. It means a hash with
2128−30 = 298 collisions in modern QDR-III memories with
512 Mb of storage capacity in a FPGA, what is unacceptable.
Although, since the set of forbidden IP addresses is quite
small, as well as the currently used IPv6 address set is, an
optimized hash function could be used in order to mitigate
this problem and allow for the migration of the proposed
architecture to IPv6.

VI. CONCLUSIONS

In this paper, a scalable URL legal filtering solution for
100GbE networks is proposed. Our approach is a combined
architecture with the advantages of software and hardware so-
lutions. Server workload is reduced in this combined architec-
ture, based on the fact user’s requests are not usually directed
to forbidden websites. The initial FPGA design shows the
modules included in the architecture and the pipeline process.
QDR-II memories and hash functions allow the architecture to
work with the whole set of IP addresses at high line rates. In
addition, the rule updating process is done online to avoid
traffic cuts. Based on this design, we have implemented a
proof of concept at 10GbE. Results show the feasibility of
the hardware implementation to work in 100GbE networks
with state-of-art FPGAs when boards supporting interfaces at
that rate will become available.

ACKNOWLEDGMENT

This research was carried out with support of project
DEPACO (TSI-020100-2009-28) funded by the the Spanish
Ministry of Industry, Tourism and Commerce.

REFERENCES

[1] Y. Qi, J. Fong, W. Jiang, B. Xu, J. Li, and V. K. Prasanna, “Multi-
dimensional Packet Classification on FPGA: 100 Gbps and Beyond,”
in Proceedings of International Conference on on Field-Programmable
Technology. ACM, December 2010.

[2] Q. Gan and T. Suel, “Improved techniques for result caching in web
search engines,” in Proceedings of the 18th international conference on
World wide web. ACM, 2009, pp. 431–440.

[3] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache: a scalable
wide-area web cache sharing protocol,” IEEE/ACM Transactions on
Networking (TON), vol. 8, no. 3, pp. 281–293, 2000.

[4] Z. Prodanoff and K. Christensen, “Managing routing tables for URL
routers in content distribution networks,” International Journal of Net-
work Management, vol. 14, no. 3, pp. 177–192, 2004.

[5] Z. Zhou, T. Song, and Y. Jia, “A High-Performance URL Lookup Engine
for URL Filtering Systems,” in Communications (ICC), 2010 IEEE
International Conference on. IEEE, 2010, pp. 1–5.

[6] M. Dashtbozorgi and M. Abdollahi Azgomi, “A high-performance and
scalable multi-core aware software solution for network monitoring,”
The Journal of Supercomputing, pp. 1–24, 2010.

[7] H. Yuan, B. Wun, and P. Crowley, “Software-based implementations of
updateable data structures for high-speed URL matching,” in Proceed-
ings of the 6th ACM/IEEE Symposium on Architectures for Networking
and Communications Systems. ACM, 2010, p. 15.

[8] L. Degioanni and G. Varenni, “Introducing scalability in network mea-
surement: toward 10 Gbps with commodity hardware,” in Proceedings of
the 4th ACM SIGCOMM Conference on Internet Measurement. ACM,
2004, pp. 233–238.

[9] H. Song, F. Hao, M. Kodialam, and T. Lakshman, “Ipv6 lookups using
distributed and load balanced bloom filters for 100gbps core router line
cards,” in INFOCOM 2009, IEEE, april 2009, pp. 2518 –2526.

[10] M. Bando, Y.-L. Lin, and H. J. Chao, “Flashtrie: Beyond 100-gb/s
ip route lookup using hash-based prefix-compressed trie,” Networking,
IEEE/ACM Transactions on, vol. PP, no. 99, p. 1, 2012.

[11] W. Jiang and V. K. Prasanna, “Field-split parallel architecture
for high performance multi-match packet classification using
fpgas,” in Proceedings of the twenty-first annual symposium on
Parallelism in algorithms and architectures, ser. SPAA ’09. New
York, NY, USA: ACM, 2009, pp. 188–196. [Online]. Available:
http://doi.acm.org/10.1145/1583991.1584044

[12] General DDR SRAM functionality. (July 2001). [Online]. Available:
http://download.micron.com/pdf/technotes/TN4605.pdf.

[13] QDR-II, QDR-II+, DDR-II, and DDR-II+ Design Guide. (November
2007). [Online]. Available: http://www.cypress.com/?docID=25736.

[14] Memory Interface Solutions. (September 2010). [Online]. Available:
http://www.xilinx.com/support/documentation/.

[15] NetCOPE FPGA Platform for Rapid Development of Network
Applications. Product Brief. [Online]. Available: http://www.invea-
tech.com/data/netcope/netcope pb.pdf.

[16] Home page of the IEEE 802.3ae 10Gb/s Ether-
net Task Force. (October 2007). [Online]. Available:
http://grouper.ieee.org/groups/802/3/ae/public/index.html.

[17] Home page of the IEEE 802.3ba 40Gb/s and 100Gb/s
Ethernet Task Force. (January 2011). [Online]. Available:
http://grouper.ieee.org/groups/802/3/ba/public/index.html.

[18] Virtex 7 family overview. (January 2010). [Online]. Available:
http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/index.htm.

