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Abstract The ONF Transport API is an interface to enable control of Transport networks, including 
services such as topology, or connectivity setup. We present the first demonstration of a connectivity 
service over a DWDM network using the ONF Transport API. 

Introduction 
For several years, network operators have 
worked in get interoperability between multiple 
transport network scenarios, in order to 
encourage the competition among equipment 
manufacturers and to have more efficient 
network solutions. Nowadays, the increment of 
bandwidth requirements in the transport 
network, in addition to the actual environment 
where the end-user is willing to pay less for the 
service, force a decrease of revenues. 
Software Define Networks (SDN) architecture 
allows the network operators to have multi-
vendor interoperability. This architecture offers 
automated and simplified network service 
provisioning through different vendors, network 
segments (e.g., metro, core, data center) and 
technologies (e.g., IP/MPLS, optical, 
OpenFlow). The main idea of Software Define 
Network (SDN) is to separate the control and 
data plane allowing network programmability 
and this is especially appropriate in optical 
network, which signalling is done always via an 
out of band channel. In the previous model the 
controller was a NMS and there was no 
standard way to communicate the end devices 
with the NMS. The utilization of open and 
standard interfaces to enable interoperability is 
the first advantage of this SDN architecture. 
Network operators usually acquire product from 
different vendors, because they use multiple 
technologies coexisting in their networks. Also 
multi-domains networks are required for the 
operators in order to cope with administrative 
and regional organizations. However, the 
current solutions in the market for SDN are 
limited, only based on single domain and mono 
vendor solutions. A single SDN controller 
presents scalability and reliability problems 
when we try to configure the whole network of 
an operator. These problems are compounded 
when considering an architecture that should 
deal with multiple South Bound Interfaces (SBI) 

like OpenFlow and GMPLS.   
The Open Networking Foundation (ONF) has 
proposed a hierarchical SDN architecture that 
fits with the multi-vendor/multi-domain scenario. 
In this approach, multiple SDN controllers 
interact with an SDN orchestrator hierarchically 
placed on top of them, as shown in Fig.1.  
In Transport Networks, where network-control 
function and behavior are well-understood and 
established, standardizing application 
programmer’s interfaces (APIs) to the network 
control functions becomes important. ONF is 
reviewing the set of functional requirements and 
information model for the Transport API2 (T-
API), while implementing in SNOWMASS 
OpenSourceSDN.org project the data models 
for it (T-API YANG models)3.  
This paper extends the previous work in1 
analysing the Transport API capabilities and 
achieving the first experimental demonstration of 
a connectivity service over a DWDM network 
using the ONF Transport API over RESTconf 
protocol. 

Transport API for Carrier SDN scenarios 
The T-API abstracts the main services for an 
SDN controller: (1) Network Topology, (2) 
Connectivity Requests, (3) Path Computation, 
(4) Network Virtualization, and (5) Notification.  

Fig. 1: Hierarchical SDN architecture for transport networks 
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Network Topology functionality requires, at a 
minimum, that the interface exports the context 
(Fig.2), which is the scope of control, interaction 
and naming that a particular T-API provider 
(SDN controller) or client application has with 
respect to the information exchanged over the 
interface. The context describes the Service End 
Points, which refer to the outward customer-
facing aspects of the edge-port functions, and 
the Network Topology. However, network 
identifiers help to carry out path computation 
and to integrate the nodes for an end-to-end 
scenario. Further, the controllers can provide 
information about the links and nodes in the 
domain (complete or abstracted, depending on 
the configured shared context). It is clear that 
the more information is shared, the less 
abstracted the network appears. The 
Connectivity Service (Fig.2.d) represents an 
“intent-like” request for connectivity between two 
or more Service-End-Points. Instead, a 
connection is the provisioned potential for 
forwarding (circuit/packet) between two or more 
Node Edge Points of a Node. However, there 
are other Connectivity Constraints that can be 
requested, such as (a) excluding or including 
nodes/links for traffic engineering, (b) defining 
the protection level, (c) defining its bandwidth or 
(d) defining its disjointness from another 
connection.  
The Path Computation function is a critical and 
fundamental feature because individual 
controllers in each domain are only able to 
share abstracted information that is local to their 
domain. An orchestrator with its global end-to-
end view can optimize end-to-end connections 
that individual controllers cannot configure.  
Network Virtualization services enables to 
expose a subset of the network resources to 
different tenants. 
Finally, a Notification service allows a publish 

and subscribe mechanism, which will allow 
asynchronous notifications using a protocol such 
as websockets. 
In view of this, we can affirm that the T-API is in 
a good position to be the NBI of the SDN 
orchestrator or as the common abstraction 
model between the SDN orchestrator and the 
controllers. The importance of T-API relays in its 
simplicity and usability in order to extend its 
adoption. Other solutions based on YANG 
models are being proposed in the scope of IETF 
and OpenConfig. 
Connectivity service provisioning use case 
Fig.3 shows both the shared view and the 
provider view of the proposed use case. In this 
scenario, there is no information about an 
abstract network topology shared between the 
client application and service provider. In this 
case, only the service end points are shared 
knowledge. The Provider view displays the 
different relationships between the service end 
points and customer edges and provider edges.  
Only the Topology (to recover the context, which 
includes the service end points) and 
Connectivity service APIs are used by the client 
to manage connectivity services between 
service end points. No path constraints can be 
requested in the connectivity setup request and 
no path information can be returned for a 
connection. 
When a connectivity service request T-API is 
received, a Transport SDN controller within the 
service provider will internally call its path 
computation to setup the connection within the 
service provider network.  
In this use case the client is willing to 
dynamically create a OCh between two of its CE 
connected to the SP network through DWDM 
links. In order to support this use case, it is 
enough to pre-configure two service end points: 
X, and Y such that, to create the OCh between 
CE1 and CE2, a connectivity service needs to 
be requested between X and Y. 

Fig. 3: Shared and Provider context views 

 

Fig. 2: T-API context JSON 



Experimental demonstration 
Fig.4.a shows the experimental network 
scenario, including a Network Orchestrator, from 
Telefónica, based on the Open Source 
Netphony ABNO5 and an optical SDN controller 
(provided by CTTC) which handles the DWDM 
network of the ADRENALINE Testbed. 
A T-API SDN controller has been automatically 
generated using the same procedure as 
described in4. The T-API SDN controller 
translates the requested T-API connectivity 
service towards an AS-PCE.  
The message exchange between the Client 
(Network Orchestrator) and the optical SDN 
controller is shown in Fig.4.b. First, we observe 
that the client requests the context to the SDN 
controller. Once the service end points have 
been considered, a connectivity service is 
requested through a RESTconf remote 
procedure call. The internal autogenerated T-
API SDN controller translates this request into 
the necessary PCInitiate command sent to the 
AS-PCE, which triggers an LSP connection. 
Once the connection has been established, the 
AS-PCE answers with a PCRpt, which is 
translated into the acknowledgement of the 
creation of the connectivity service, which 
includes a connectivity service JSON (Fig.4.d). 
Fig.4.c shows the wireshark captures of the 
message exchange between the client (ABNO), 
the T-API SDN Controller (TSDN-Ctl), and the 
AS-PCE. We can observe the different Uniform 
Resource Identifiers (URI), which are related 
with the RESTconf protocol using the defined 
TAPI data models (YANG).  
Finally, Fig.4.d shows an excerpt of the 
connectivity service JSON, which includes the 
requested service ports, connection details, 
direction, and status, as well as the requested 
connectivity constraints. 
 

Open issues within the T-API 
Although the T-API is an important step forward 
towards a multi-vendor inter-operability solution 
for carrier networks, several issues remain open 
with the current release. The first issue is related 
to extendibility of the information model, towards 
an enhanced model for optical details, as well as 
other technologies as microwave1. The second 
issue is the alignment of the information model 
with IETF and other SDOs. Both issues are 
currently being handled. 
Conclusions 
This paper presents the Transport API as a 
solution for SDN Carrier networks as well as 
carries out the first experimental demonstration 
of a connectivity service over a DWDM network 
using the ONF Transport API data model and 
RESTconf protocol.  
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