
Transport API: A Solution for SDN in Carriers Networks

Victor Lopez(1), Ricard Vilalta (2), Victor Uceda(1), Arturo Mayoral(2), Ramon Casellas (2), Ricardo
Martínez(2), Raul Muñoz (2), Juan Pedro Fernandez Palacios (1)

(1) Telefónica I+D/GCTO (victor.lopezalvarez@telefonica.com), (2) CTTC (ricard.vilalta@cttc.es)

Abstract The ONF Transport API is an interface to enable control of Transport networks, including
services such as topology, or connectivity setup. We present the first demonstration of a connectivity
service over a DWDM network using the ONF Transport API.

Introduction
For several years, network operators have
worked in get interoperability between multiple
transport network scenarios, in order to
encourage the competition among equipment
manufacturers and to have more efficient
network solutions. Nowadays, the increment of
bandwidth requirements in the transport
network, in addition to the actual environment
where the end-user is willing to pay less for the
service, force a decrease of revenues.
Software Define Networks (SDN) architecture
allows the network operators to have multi-
vendor interoperability. This architecture offers
automated and simplified network service
provisioning through different vendors, network
segments (e.g., metro, core, data center) and
technologies (e.g., IP/MPLS, optical,
OpenFlow). The main idea of Software Define
Network (SDN) is to separate the control and
data plane allowing network programmability
and this is especially appropriate in optical
network, which signalling is done always via an
out of band channel. In the previous model the
controller was a NMS and there was no
standard way to communicate the end devices
with the NMS. The utilization of open and
standard interfaces to enable interoperability is
the first advantage of this SDN architecture.
Network operators usually acquire product from
different vendors, because they use multiple
technologies coexisting in their networks. Also
multi-domains networks are required for the
operators in order to cope with administrative
and regional organizations. However, the
current solutions in the market for SDN are
limited, only based on single domain and mono
vendor solutions. A single SDN controller
presents scalability and reliability problems
when we try to configure the whole network of
an operator. These problems are compounded
when considering an architecture that should
deal with multiple South Bound Interfaces (SBI)

like OpenFlow and GMPLS.
The Open Networking Foundation (ONF) has
proposed a hierarchical SDN architecture that
fits with the multi-vendor/multi-domain scenario.
In this approach, multiple SDN controllers
interact with an SDN orchestrator hierarchically
placed on top of them, as shown in Fig.1.
In Transport Networks, where network-control
function and behavior are well-understood and
established, standardizing application
programmer’s interfaces (APIs) to the network
control functions becomes important. ONF is
reviewing the set of functional requirements and
information model for the Transport API2 (T-
API), while implementing in SNOWMASS
OpenSourceSDN.org project the data models
for it (T-API YANG models)3.
This paper extends the previous work in1
analysing the Transport API capabilities and
achieving the first experimental demonstration of
a connectivity service over a DWDM network
using the ONF Transport API over RESTconf
protocol.

Transport API for Carrier SDN scenarios
The T-API abstracts the main services for an
SDN controller: (1) Network Topology, (2)
Connectivity Requests, (3) Path Computation,
(4) Network Virtualization, and (5) Notification.

Fig. 1: Hierarchical SDN architecture for transport networks

SDN Controller

GUI/NMS/Application

SDN Controller
South Bound Interface

South Bound Interface

SDN Orchestrator

Common abstraction
model

North Bound Interface

Network Topology functionality requires, at a
minimum, that the interface exports the context
(Fig.2), which is the scope of control, interaction
and naming that a particular T-API provider
(SDN controller) or client application has with
respect to the information exchanged over the
interface. The context describes the Service End
Points, which refer to the outward customer-
facing aspects of the edge-port functions, and
the Network Topology. However, network
identifiers help to carry out path computation
and to integrate the nodes for an end-to-end
scenario. Further, the controllers can provide
information about the links and nodes in the
domain (complete or abstracted, depending on
the configured shared context). It is clear that
the more information is shared, the less
abstracted the network appears. The
Connectivity Service (Fig.2.d) represents an
“intent-like” request for connectivity between two
or more Service-End-Points. Instead, a
connection is the provisioned potential for
forwarding (circuit/packet) between two or more
Node Edge Points of a Node. However, there
are other Connectivity Constraints that can be
requested, such as (a) excluding or including
nodes/links for traffic engineering, (b) defining
the protection level, (c) defining its bandwidth or
(d) defining its disjointness from another
connection.
The Path Computation function is a critical and
fundamental feature because individual
controllers in each domain are only able to
share abstracted information that is local to their
domain. An orchestrator with its global end-to-
end view can optimize end-to-end connections
that individual controllers cannot configure.
Network Virtualization services enables to
expose a subset of the network resources to
different tenants.
Finally, a Notification service allows a publish

and subscribe mechanism, which will allow
asynchronous notifications using a protocol such
as websockets.
In view of this, we can affirm that the T-API is in
a good position to be the NBI of the SDN
orchestrator or as the common abstraction
model between the SDN orchestrator and the
controllers. The importance of T-API relays in its
simplicity and usability in order to extend its
adoption. Other solutions based on YANG
models are being proposed in the scope of IETF
and OpenConfig.
Connectivity service provisioning use case
Fig.3 shows both the shared view and the
provider view of the proposed use case. In this
scenario, there is no information about an
abstract network topology shared between the
client application and service provider. In this
case, only the service end points are shared
knowledge. The Provider view displays the
different relationships between the service end
points and customer edges and provider edges.
Only the Topology (to recover the context, which
includes the service end points) and
Connectivity service APIs are used by the client
to manage connectivity services between
service end points. No path constraints can be
requested in the connectivity setup request and
no path information can be returned for a
connection.
When a connectivity service request T-API is
received, a Transport SDN controller within the
service provider will internally call its path
computation to setup the connection within the
service provider network.
In this use case the client is willing to
dynamically create a OCh between two of its CE
connected to the SP network through DWDM
links. In order to support this use case, it is
enough to pre-configure two service end points:
X, and Y such that, to create the OCh between
CE1 and CE2, a connectivity service needs to
be requested between X and Y.

Fig. 3: Shared and Provider context views

Fig. 2: T-API context JSON

Experimental demonstration
Fig.4.a shows the experimental network
scenario, including a Network Orchestrator, from
Telefónica, based on the Open Source
Netphony ABNO5 and an optical SDN controller
(provided by CTTC) which handles the DWDM
network of the ADRENALINE Testbed.
A T-API SDN controller has been automatically
generated using the same procedure as
described in4. The T-API SDN controller
translates the requested T-API connectivity
service towards an AS-PCE.
The message exchange between the Client
(Network Orchestrator) and the optical SDN
controller is shown in Fig.4.b. First, we observe
that the client requests the context to the SDN
controller. Once the service end points have
been considered, a connectivity service is
requested through a RESTconf remote
procedure call. The internal autogenerated T-
API SDN controller translates this request into
the necessary PCInitiate command sent to the
AS-PCE, which triggers an LSP connection.
Once the connection has been established, the
AS-PCE answers with a PCRpt, which is
translated into the acknowledgement of the
creation of the connectivity service, which
includes a connectivity service JSON (Fig.4.d).
Fig.4.c shows the wireshark captures of the
message exchange between the client (ABNO),
the T-API SDN Controller (TSDN-Ctl), and the
AS-PCE. We can observe the different Uniform
Resource Identifiers (URI), which are related
with the RESTconf protocol using the defined
TAPI data models (YANG).
Finally, Fig.4.d shows an excerpt of the
connectivity service JSON, which includes the
requested service ports, connection details,
direction, and status, as well as the requested
connectivity constraints.

Open issues within the T-API
Although the T-API is an important step forward
towards a multi-vendor inter-operability solution
for carrier networks, several issues remain open
with the current release. The first issue is related
to extendibility of the information model, towards
an enhanced model for optical details, as well as
other technologies as microwave1. The second
issue is the alignment of the information model
with IETF and other SDOs. Both issues are
currently being handled.
Conclusions
This paper presents the Transport API as a
solution for SDN Carrier networks as well as
carries out the first experimental demonstration
of a connectivity service over a DWDM network
using the ONF Transport API data model and
RESTconf protocol.
Acknowledgements
This research was partially funded by the European
Commission H2020 Research and Innovation
program, ACINO project, Grant Number 645127,
www.acino.eu and EU FP7 project STRAUSS (FP7-
ICT-2013-EU-Japan 608528) and Spanish MINECO
project DESTELLO (TEC2015-69256-R). The authors
would also like to thank the ONF Transport API
design team.
References
[1] V. Lopez et al., “Towards a Transport SDN for Carriers

Networks: An Evolutionary Perspective,” Proc. NOC,

Lisbon (2016).

[2] K. Sethuraman (ed.), et al., “Functional Requirements

for Transport API”, v.0.16, ONF.

[3] OpenSourceSDN.org Project SNOWMASS,

https://github.com/OpenNetworkingFoundation/ONFOp

enTransport/

[4] A. Mayoral, et al., First experimental demonstration of a

distributed cloud and heterogeneous network

orchestration with a common Transport API for E2E

services with QoS, OFC 2016.
[5] Open Source Netphony ABNO, available at:

https://github.com/telefonicaid/netphony-abno

Fig. 4: a) Network Scenario, b) Message exchange workflow, c) Wireshark capture, d) Connectivity Service JSON

