
First Demonstration of an Automatic Multilayer Intent-Based
Secure Service Creation by an Open Source SDN Orchestrator

Thomas Szyrkowiec(1), Michele Santuari(2), Mohit Chamania(1), Domenico Siracusa(2),
Achim Autenrieth(1), Victor Lopez(3)

(1) ADVA Optical Networking SE, Germany tszyrkowiec@advaoptical.com
(2) CREATE-NET Research Center, Italy
(3) Telefonica I+D, Spain

Abstract In this work we demonstrate an automatic intent-based encryption layer selection and

configuration for a multilayer network covering IP and optical utilizing an open source SDN orchestrator.

Results indicate that the processing impact of a secure channel creation is negligible.

Introduction
The large-scale migration of mission critical
infrastructure to the public internet and data
center environments has made data security an
increasingly difficult proposition. Services
migrating to this infrastructure also have to
contend with the potential costs associated with
a data breach, which are significant for sensitive
applications such as banking, financial trading
etc. As a result, considerable investment is made
to reduce the probability of a breach, with network
encryption as a key component in the overall
solution. End-to-end encryption (e.g. HTTPS,
SSL/TLS) can effectively address the issue of
encryption in the datapath but a large number of
application protocols do not natively support it
and are therefore vulnerable. A typical example
is the Fibre Channel protocol, which is widely
used in Storage Area Networks (SANs) and does
not have native encryption support1. With SANs
now migrating beyond a dedicated physical
infrastructure to a virtualized and potentially even
distributed cloud infrastructure, there is a need to
encrypt traffic during transmission over the
network. In-flight encryption is also extensively
employed by financial institutions and
governmental agencies, which are extremely
sensitive to data breaches.
 A variety of solutions can encrypt traffic in
transit and reduce the probability of a data
breach. Typical techniques support encryption
either at the transmission (physical) or higher
layers (e.g. MACsec, IPsec) in the network stack
and present trade-offs in the form of cost and
performance (network latency and supported
capacity). Physical layer encryption encrypts the
bits entering the transmission medium and has
very low latency and does not affect the
throughput, while higher level encryption
encrypts a frame and encapsulates it in another
regular frame at the same layer, leading to
reduced throughput and increased latency2.
However, physical layer encryption requires

dedicated hardware and specialized
management, making it costlier (higher
CAPEX/OPEX) to operate than higher level
encryption, which can be performed without any
specialized hardware. As a result, the choice of
the encryption mechanism used, depends on the
requirements of the application requesting a
secure service from the network.
 In this paper, we demonstrate, for the first
time, the use of “application intents” to effectively
move this decision complexity away from the
requesting applications, making it easier for them
to request secure transmission as a service. This
service request is processed by an open source
multilayer network orchestrator which evaluates
the associated trade-offs based on the
application’s requirements, and installs
encryption either at the physical or at the IP layer,
according to the intent expressed by the
customer’s application. The orchestrator
transforms the intents into a secure service, by
selecting the encryption mechanism at the most
appropriate layer and configuring the network
devices accordingly.

System Architecture
The intent-based multilayer orchestrator,
developed in the ACINO project, is an open
source effort built on top of ONOS3 and its high
level architecture is presented in Fig.1. Following
the top-down approach, the intents, issued by a

Fig.1: System Architecture

client, are submitted through a REST northbound
interface (NBI). The orchestrator routes and
compiles the intents and selects the actions that
need to be taken to satisfy the intent. Those
actions are translated and sent through
southbound protocols to the devices that need to
be configured. The devices themselves are either
accessed directly or through a mediation layer
like an optical controller. Proposed protocols for
southbound interactions in this paper are
OpenFlow, OVSDB and YANG descriptions, e.g.
Control Orchestration Protocol4 (COP) or
Transport API5 (TAPI), in combination with
NETCONF or RESTCONF as a transport
protocol. The optical controller is represented by
ADVA’s Optical Virtualization Controller (OVC).
The hardware side comprises optical equipment
with encryption capabilities - on a subset of the
ports - as well as switches or routers which are
able to install encrypted tunnels, e.g. IPsec.

Extensions for Encryption
The extensions of the existing orchestrator
implementation6 affected in particular the
northbound interface, the intent processing and
the southbound interface (SBI). In contrast to
previous work, where we used the CLI, this time
ONOS’s REST NBI was used and extended to
support the encryption, latency and bandwidth
constraints needed for an automatic encryption
assignment. The encryption flag indicates that
the encryption processing has to take place,
otherwise the intent is processed like an
unencrypted request. The latency flag is an
indicator if the traffic relies on a timely delivery.
The bandwidth is the last criterion that impacts
the choice of the best fitting encryption layer.

The ACINO intent compiler6 was extended to
handle the new constraints by applying the
decision logic explained in the next section. The
SBIs needed to implement new functionality to
propagate the encryption information to the
underlying hardware and mediation layer
respectively. In the case of switches, a GRE
tunnel setup routine was added to establish an IP
layer encryption leveraging the OVSDB protocol.
 The COP4 protocol (and the associated driver)
was augmented by introducing a flag to indicate
encryption to the underlying (optical) controller:
augment “/cop:calls/cop:call” {

 container encryption { presence "encrypt call"}}

 Finally, the optical controller, i.e. OVC, itself
needed to handle the encryption requests, to
configure the ports and to setup the lightpath.

Decision Logic
As mentioned earlier, the parameters that are
evaluated, when choosing an encryption
mechanism, include the encryption flag, the
latency flag and a bandwidth value. As shown in
Fig.2, the encryption flag is checked first to verify
that the traffic is privacy sensitive. If this is the
case, the latency constraint is evaluated next,
else the processing for unencrypted traffic is
applied. Since the IP layer encryption introduces
more delay2 than a physical encryption, the lower
layer is chosen for latency sensitive traffic.
Finally, the bandwidth is checked in order to
determine if an IP-based solution can satisfy the
demand or if physical layer encryption, working at
line speed7, is required. Depending on this
parameter the final decision is made and the
required actions are initiated.

Experimental Validation

The presented system architecture was
implemented and evaluated with commercial
hardware in a lab testbed (Fig.3). We used three
PCs to host the software components. Two
machines hosted an Open vSwitch (OVS)
instance each, including a virtual host interface
for end to end verification. The other computer
ran the controllers, i.e. ONOS and OVC, and was
connected to the optical equipment as well as the
OVS instances through a management network.

Fig.2: Flow chart of the decision logic

Encryption constraint

Latency constraint

Bandwidth Constraint

Unencrypted
processing

Optical
encryption

IP encryption

No

Yes

High

Low

No

Yes

Fig.3: Testbed setup and ONOS’s view of the testbed

The testbed included an ADVA FSP3000
ROADM ring consisting of three nodes. Two of
them were equipped with AES cards7 which
encrypt all traffic on the physical layer. The secret
key for both encryption cards was configured by
the administrator. For the IP encryption ONOS
triggered the creation of a GRE tunnel between
both OVS instances. The tunnel became active
after the lightpath was setup between the network
ports on both sides. We evaluated two scenarios
that requested secure service. The best suited
layer for the encryption was chosen automatically
by the orchestrator applying the previously
described decision logic.

Measurements

We conducted experimental tests for both layers
of encryption, i.e. physical as well as IP.
 In the first scenario we used an intent that
requires an encryption, is latency sensitive and
the requested bandwidth was 1 Mbit/s between
the host on OVS1 and the host on OVS2. One
example for such traffic could be a real-time
audio conference. Based on those constraints
the ACINO orchestrator decides to use optical
encryption because of the latency. The detailed
Wireshark trace is shown in Fig.4. First the client
sends a request to the orchestrator located at the
controller node. The intent is confirmed and the
processing is started. Next an internal controller
message is sent from ONOS to the OVC (port
8080) requesting an optical lightpath between the
client ports of the ROADMs (10.12.105.38 & 39).
The content of the request is shown in the lower
part of Fig.4. All necessary fields for a service
setup are included. The encryption flag that was
added as part of this work is highlighted in the
picture. The processing time, starting with the
intent request at the NBI and ending with the
setup message for an encrypted optical tunnel at
the SBI, takes less than 120 ms.

 In the second scenario we used a request for
encryption which only required a small bandwidth
of 1 Mbit/s without being latency sensitive.
According to our decision algorithm this leads to
an IP layer encryption. The endpoints remained
the same as before. The Wireshark trace of this
run is depicted in Fig.5. We boiled the trace down
to the most important packets, starting again with
the initial intent. After that we see a difference in
the course of messages. The controller sends
OVSDB configuration messages to OVS1 and
OVS2 to initialize the GRE tunnel on both sides.
After that the tunnel setup in between is triggered.
The COP request, not presented here due to
space constraints, is missing the encryption flag
according to the “presence” definition in YANG.
As soon as the optical lightpath is created the
encrypted IP tunnel can be used to transmit
privacy sensitive data. As we can see here the
processing time has slightly grown to about
200 ms due to the additional steps for the
configuration of both virtual switches as well as
the related messaging.

Conclusions

In this work we have demonstrated for the first
time an automatic intent-based encryption
selection and configuration for a multilayer
network, covering IP and optical, by an
orchestrator. The results indicate that the
processing time is negligible to the lightpath
setup, which takes a few seconds per hop. In the
future we expect to automate the key setup
needed for the encryption.

Acknowledgements

This research has received funding from the European

Commission within the H2020 Programme, ACINO

project, Grant Number 645127.

References

[1] H. Dwivedi, “Storage Security,” BlackHat (2003).

[2] R. Ramaswamy et al., “Characterizing network

processing delay,” GLOBECOM (2004).

[3] ON.LAB, “Open Network Operating System (ONOS),”

http://onosproject.org/ (2016).

[4] STRAUSS project, “Control Orchestration Procotol

(COP),” https://github.com/ict-strauss/COP.

[5] Open Networking Foundation, “Functional Requirements

for Transport API,” ONF TR-527 (2016).

[6] M. Santuari et al., "Policy-based restoration in IP/optical

transport networks," IEEE NetSoft (2016).

[7] ADVA Optical Networking, “FSP 3000 Optical Network

Encryption,” http://goo.gl/QrOn1W.

Fig.4: Physical encryption setup trace

Fig.5: IP encryption setup trace

