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Abstract In this work we demonstrate an automatic intent-based encryption layer selection and 

configuration for a multilayer network covering IP and optical utilizing an open source SDN orchestrator. 

Results indicate that the processing impact of a secure channel creation is negligible. 

Introduction 
The large-scale migration of mission critical 
infrastructure to the public internet and data 
center environments has made data security an 
increasingly difficult proposition. Services 
migrating to this infrastructure also have to 
contend with the potential costs associated with 
a data breach, which are significant for sensitive 
applications such as banking, financial trading 
etc. As a result, considerable investment is made 
to reduce the probability of a breach, with network 
encryption as a key component in the overall 
solution. End-to-end encryption (e.g. HTTPS, 
SSL/TLS) can effectively address the issue of 
encryption in the datapath but a large number of 
application protocols do not natively support it 
and are therefore vulnerable. A typical example 
is the Fibre Channel protocol, which is widely 
used in Storage Area Networks (SANs) and does 
not have native encryption support1. With SANs 
now migrating beyond a dedicated physical 
infrastructure to a virtualized and potentially even 
distributed cloud infrastructure, there is a need to 
encrypt traffic during transmission over the 
network. In-flight encryption is also extensively 
employed by financial institutions and 
governmental agencies, which are extremely 
sensitive to data breaches. 
 A variety of solutions can encrypt traffic in 
transit and reduce the probability of a data 
breach. Typical techniques support encryption 
either at the transmission (physical) or higher 
layers (e.g. MACsec, IPsec) in the network stack 
and present trade-offs in the form of cost and 
performance (network latency and supported 
capacity). Physical layer encryption encrypts the 
bits entering the transmission medium and has 
very low latency and does not affect the 
throughput, while higher level encryption 
encrypts a frame and encapsulates it in another 
regular frame at the same layer, leading to 
reduced throughput and increased latency2. 
However, physical layer encryption requires 

dedicated hardware and specialized 
management, making it costlier (higher 
CAPEX/OPEX) to operate than higher level 
encryption, which can be performed without any 
specialized hardware. As a result, the choice of 
the encryption mechanism used, depends on the 
requirements of the application requesting a 
secure service from the network. 
  In this paper, we demonstrate, for the first 
time, the use of “application intents” to effectively 
move this decision complexity away from the 
requesting applications, making it easier for them 
to request secure transmission as a service. This 
service request is processed by an open source 
multilayer network orchestrator which evaluates 
the associated trade-offs based on the 
application’s requirements, and installs 
encryption either at the physical or at the IP layer, 
according to the intent expressed by the 
customer’s application. The orchestrator 
transforms the intents into a secure service, by 
selecting the encryption mechanism at the most 
appropriate layer and configuring the network 
devices accordingly. 

System Architecture 
The intent-based multilayer orchestrator, 
developed in the ACINO project, is an open 
source effort built on top of ONOS3 and its high 
level architecture is presented in Fig.1. Following 
the top-down approach, the intents, issued by a 

 
Fig.1: System Architecture 



client, are submitted through a REST northbound 
interface (NBI). The orchestrator routes and 
compiles the intents and selects the actions that 
need to be taken to satisfy the intent. Those 
actions are translated and sent through 
southbound protocols to the devices that need to 
be configured. The devices themselves are either 
accessed directly or through a mediation layer 
like an optical controller. Proposed protocols for 
southbound interactions in this paper are 
OpenFlow, OVSDB and YANG descriptions, e.g. 
Control Orchestration Protocol4 (COP) or 
Transport API5 (TAPI), in combination with 
NETCONF or RESTCONF as a transport 
protocol. The optical controller is represented by 
ADVA’s Optical Virtualization Controller (OVC). 
The hardware side comprises optical equipment 
with encryption capabilities - on a subset of the 
ports - as well as switches or routers which are 
able to install encrypted tunnels, e.g. IPsec. 

Extensions for Encryption 
The extensions of the existing orchestrator 
implementation6 affected in particular the 
northbound interface, the intent processing and 
the southbound interface (SBI). In contrast to 
previous work, where we used the CLI, this time 
ONOS’s REST NBI was used and extended to 
support the encryption, latency and bandwidth 
constraints needed for an automatic encryption 
assignment. The encryption flag indicates that 
the encryption processing has to take place, 
otherwise the intent is processed like an 
unencrypted request. The latency flag is an 
indicator if the traffic relies on a timely delivery. 
The bandwidth is the last criterion that impacts 
the choice of the best fitting encryption layer. 

The ACINO intent compiler6 was extended to 
handle the new constraints by applying the 
decision logic explained in the next section. The 
SBIs needed to implement new functionality to 
propagate the encryption information to the 
underlying hardware and mediation layer 
respectively. In the case of switches, a GRE 
tunnel setup routine was added to establish an IP 
layer encryption leveraging the OVSDB protocol. 
 The COP4 protocol (and the associated driver) 
was augmented by introducing a flag to indicate 
encryption to the underlying (optical) controller: 
augment “/cop:calls/cop:call” { 

    container encryption { presence "encrypt call"}} 

 Finally, the optical controller, i.e. OVC, itself 
needed to handle the encryption requests, to 
configure the ports and to setup the lightpath. 

Decision Logic 
As mentioned earlier, the parameters that are 
evaluated, when choosing an encryption 
mechanism, include the encryption flag, the 
latency flag and a bandwidth value. As shown in 
Fig.2, the encryption flag is checked first to verify 
that the traffic is privacy sensitive. If this is the 
case, the latency constraint is evaluated next, 
else the processing for unencrypted traffic is 
applied. Since the IP layer encryption introduces 
more delay2 than a physical encryption, the lower 
layer is chosen for latency sensitive traffic. 
Finally, the bandwidth is checked in order to 
determine if an IP-based solution can satisfy the 
demand or if physical layer encryption, working at 
line speed7, is required. Depending on this 
parameter the final decision is made and the 
required actions are initiated. 

Experimental Validation 

The presented system architecture was 
implemented and evaluated with commercial 
hardware in a lab testbed (Fig.3). We used three 
PCs to host the software components. Two 
machines hosted an Open vSwitch (OVS) 
instance each, including a virtual host interface 
for end to end verification. The other computer 
ran the controllers, i.e. ONOS and OVC, and was 
connected to the optical equipment as well as the 
OVS instances through a management network. 

 
Fig.2: Flow chart of the decision logic 
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Fig.3: Testbed setup and ONOS’s view of the testbed 



The testbed included an ADVA FSP3000 
ROADM ring consisting of three nodes. Two of 
them were equipped with AES cards7 which 
encrypt all traffic on the physical layer. The secret 
key for both encryption cards was configured by 
the administrator. For the IP encryption ONOS 
triggered the creation of a GRE tunnel between 
both OVS instances. The tunnel became active 
after the lightpath was setup between the network 
ports on both sides. We evaluated two scenarios 
that requested secure service. The best suited 
layer for the encryption was chosen automatically 
by the orchestrator applying the previously 
described decision logic. 

Measurements 

We conducted experimental tests for both layers 
of encryption, i.e. physical as well as IP. 
 In the first scenario we used an intent that 
requires an encryption, is latency sensitive and 
the requested bandwidth was 1 Mbit/s between 
the host on OVS1 and the host on OVS2. One 
example for such traffic could be a real-time 
audio conference. Based on those constraints 
the ACINO orchestrator decides to use optical 
encryption because of the latency. The detailed 
Wireshark trace is shown in Fig.4. First the client 
sends a request to the orchestrator located at the 
controller node. The intent is confirmed and the 
processing is started. Next an internal controller 
message is sent from ONOS to the OVC (port 
8080) requesting an optical lightpath between the 
client ports of the ROADMs (10.12.105.38 & 39). 
The content of the request is shown in the lower 
part of Fig.4. All necessary fields for a service 
setup are included. The encryption flag that was 
added as part of this work is highlighted in the 
picture. The processing time, starting with the 
intent request at the NBI and ending with the 
setup message for an encrypted optical tunnel at 
the SBI, takes less than 120 ms. 

 In the second scenario we used a request for 
encryption which only required a small bandwidth 
of 1 Mbit/s without being latency sensitive. 
According to our decision algorithm this leads to 
an IP layer encryption. The endpoints remained 
the same as before. The Wireshark trace of this 
run is depicted in Fig.5. We boiled the trace down 
to the most important packets, starting again with 
the initial intent. After that we see a difference in 
the course of messages. The controller sends 
OVSDB configuration messages to OVS1 and 
OVS2 to initialize the GRE tunnel on both sides. 
After that the tunnel setup in between is triggered. 
The COP request, not presented here due to 
space constraints, is missing the encryption flag 
according to the “presence” definition in YANG. 
As soon as the optical lightpath is created the 
encrypted IP tunnel can be used to transmit 
privacy sensitive data. As we can see here the 
processing time has slightly grown to about 
200 ms due to the additional steps for the 
configuration of both virtual switches as well as 
the related messaging. 

Conclusions 

In this work we have demonstrated for the first 
time an automatic intent-based encryption 
selection and configuration for a multilayer 
network, covering IP and optical, by an 
orchestrator. The results indicate that the 
processing time is negligible to the lightpath 
setup, which takes a few seconds per hop. In the 
future we expect to automate the key setup 
needed for the encryption. 
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Fig.4: Physical encryption setup trace 
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