
SDN Application-Centric Orchestration

for Multi-Layer Transport Networks

F. Pederzolli1, D. Siracusa1, P. Sköldström2, S. Junique2, Ć. Rožić3, D. Klonidis3,

T. Szyrkowiec4, M. Chamania4, V. Uceda5, V. Lopez5, Y. Shikhmanter6, O. Gerstel6
1 CREATE-NET, Trento, Italy, 2 ACREO, Kista, Sweden, 3 AIT, Athens, Greece

4 ADVA, Germany, 5 Telefónica I+D/GCTO, Madrid, Spain, 6 Sedona Systems, Raanana, Israel

fpederzolli@create-net.org

ABSTRACT

Modern IP/Optical transport networks are seldom jointly operated and optimized, and do not cater to the

usually implicit requirements of applications , which ultimately drive network traffic. In this concept paper we

propose a Software Defined Networking (SDN) based Network Orchestrator to manage multi-layer transport

networks while taking explicit application requirements into account. We discuss its architecture and

requirements, an interface to allow applications to explicitly specify their requirements in a network-agnostic

manner, and possible strategies to optimize the network taking these requirements into account.

Keywords: Network Orchestration, Multi-Layer Networks, Intent-based Networking, Software-Defined

Networking.

1. INTRODUCTION

The applications that drive Internet traffic have evolved beyond simple requirements that can be easily and

cheaply met with a best-effort network and a “reliable” end-to-end transport protocol. Today’s applications can

have stringent requirements in terms of latency and jitter (e.g. financial transactions), bandwidth (e.g., Video

over IP), reliability, security, etc. Despite these diverse requirements, their traffic is ultimately routed over the

same optical connections, barring some clever Traffic Engineering (TE) efforts in the Multi Protocol Label

Switching (MPLS) layer typically used in transport networks. This “blind” approach makes it difficult to provide

adequate services to all applications, whose exact requirements are implicit and not known in detail to the

control plane of the transport network, which limits the effectiveness of pure TE, and results in an allocation of

traffic to MPLS and optical connections which is not guaranteed to actually satisfy the service requirements for

that traffic. While offering the best possible service characteristics all the way down to the optical layer (e .g.

using a fully meshed optical virtual topology) to all traffic is theoretically achievable, it is also prohibitively

expensive. A smarter approach is therefore needed.

In order to tackle this problem, the H2020 European Project ACINO proposes to exploit the logically centralized

approach of Software Defined Networking (SDN) to realize a network orchestrator capable of: (i) interfacing

directly with demanding client applications, exposing a North-Bound Interface (NBI) to allow them to submit

service requests with explicit requirements, expressed as high-level, application-friendly “intents” rather directly

using low-level network configuration commands (other than strictly necessary ingress/egress point and traffic

selection parameters), (ii) learning the state of and controlling both the packet and optical layers of a transport

network domain through an appropriate South-Bound Interface (SBI), and (iii) translating, through appropriate

dynamic and planning algorithms, such high-level intents into optimized implementable network configuration.

This paper describes a possible high-level architecture for such an application-centric SDN network orchestrator,

discusses possible languages to express intents in the NBI, gives an overview of potential strategies to compile

them into optimized network configuration. This work paves the way to the implementation of the open -source

ACINO network orchestrator, but also sets the ground for the debate on the usage of SDN to provide a

programmable multi-layer infrastructure that really caters to the needs of applications.

The paper has the following structure: Section 2 gives a high-level overview of the architecture of the proposed

Orchestrator and its main internal modules. Then, Section 3 describes the intent-based interface between the

orchestrator and applications, while Section 4 gives an overview of the possible multi-layer strategies that could

be employed. Lastly, Section 5 concludes and summarizes the work.

2. OVERVIEW OF THE APPLICATION-CENTRIC MULTI-LAYER NETWORK ORCHESTRATOR

The realization of the application-centric network vision relies, at a high level, on a logically centralized

Orchestrator, whose primary function is translating application-level service requirements into appropriate

configuration requests for both the underlying IP/MPLS and Optical network layers. Performing this functions

involves several sub-processes: maintaining a multi-layer model of the controlled network, determining which

resources are available to serve new connections, and selecting resources that satisfy application -level

constraints, which may include instantiating additional connections in the supporting optical layer or new MPLS

tunnels if needed.

Figure 1. Main architectural elements of the ACINO orchestrator.

The main elements of the proposed application-centric Network Orchestrator are outlined in Figure 1.

At the top, the orchestrator interfaces with multiple client applications, which may include a Network

Management System (NMS), by exposing a high level “Intent-based” North-Bound Interface (NBI), described in

greater detail in Section 3. This interface allows to specify target service parameters, such as desired bandwidth

(static or variable), maximum latency, transport security, reliability (as e.g. survivable downtime), calendaring

requirements, etc., without specifying how to achieve these goals ; the NBI must also expose some limited

topological information (the network ingress/egress points), to allow applications to specify needed services, and

basic management functions to check, update and remove requested services. Observe that these requirements

are not necessarily orthogonal: e.g. max latency and survivability are interwoven, as an hard bound on total

latency cannot depend on a best-effort, unknown backup path survivability scheme. It is the tas k of the

orchestrator, through its internal Multi-Layer Resource Allocation logic, to determine how to satisfy these

requirements in the underlying network environment, possibly grooming together traffic with similar needs to

achieve high utilization of the underlying resources, using dynamic multi-layer provisioning algorithms.

Additionally, an Online Planning module, accessible by select applications (such as an NMS) through the NBI,

implements longer-term, planning algorithms for re-optimization and the computation of what-if scenarios.

Some possible strategies for these algorithms are outlined in Section 4.

Finally, at the bottom of the structure of the Orchestrator an Abstraction and Configuration layer isolates the

internal logic from the specifics of the underlying devices and controller, implementing a multi-layer network

model and its translation to and from multiple individual (possibly standard) models and protocols (e.g. COP

[1][2]) for specific devices and SDN controllers . Observe that the proposed orchestrator can, in principle, work

with multiple distinct lower-level controllers, at least one per layer. These are used by the orchestrator to perform

service provisioning at all layers, which entails the ability to discover the underlying topologies and network

ports, their capabilities, and obtaining administrative access to their configuration. Furthermore, for circuit -

oriented technologies, like MPLS or transparent Dense Wavelength Division Multiplexing (DWDM), the ability

to provision specific circuits (e.g. using explicit or constrained paths) is required.

3. INTENT-BAS ED NORTH-BOUND INTERFACE

Applications need a flexible and expressive interface to communicate what they need from the network, together

with any constraints and priorities they may have. To keep this interface as simple and portable as possible, the

application should not have to understand the technical details of the underlying network domain (s), but only

worry about the measurable characteristics of the service it requires . It is then up to the network, specifically the

orchestrator, to decide how to implement the request in a manner that both satisfies the explicit requirements of

the requesting applications and the goals of the service provider. An interface that provides a way for the

application to describe what it wants from the network, rather than how it wants to configure the network can be

described as Intent-based. This division of responsibilities gives the orchestrator full freedom to decide how to

provide the requested service, which makes the application both more portable and simpler, and especially

preserves the separation between the network and applications running at its edge . In existing SDN environments

both how and what have to be specified by an application, which has to specify how to implement a particular

service based on a few basic network capabilities which may even depend on specific underlying hardware

support. Conversely, using intents an application and the orchestrator are only loosely coupled, removing the

need for the application to have knowledge of the internals of the orchestrator, the network topology and

technology.

Based on what can be realistically provided by networking hardware, we propose the definition of an

application-centric intent-based NBI. This interface allows the application to discover a number of primitives and

a grammar describing their valid combinations. A bare minimum of three types of primitives are required for an

intent to be valid, as shown in Figure 2: ConnectionPoints, an Action, and a Selector. Connection Points are

names describing network locations that are defined per application to fit its particular context, removing the

need for applications to be aware of e.g. router ports and their IP addresses. Actions describe connectivity

patterns such as Mesh, Tree, or Path. Selectors allow the application to define which part of the traffic arriving to

a ConnectionPoint belongs to it and should have an application-specific behaviour applied.

Figure 2. High-level view of primitives in an Intent

The application-specific behaviour can be described by additional constraint primitives, such as Bandwidth,

Latency, Security, Cost, and Availability. To describe when the service is required, a Calendaring primitive can

also be inserted. If there are multiple implementations for an intent, the main priority of an application can be

indicated using a Priority primitive, instructing the orchestrator to choose e.g. the implementation with the

lowest latency or cost. All these primitives are agnostic of the underlying network technology, not restricting the

NBI to be used only on top of e.g. optical networks. A valid intent could be e.g. “Mesh ConnectionPoints A, B,

and C, for traffic on IP-subnet 1.2.3.0/24 with bandwidth 10Gb, prioritize latency, from Monday 21st of

February 02:00 GMT”. A schema detailing an initial definition of the REST interfaces, and hierarchical data

structures that make up the primitives and the grammar is available at [3].

Once an intent has been sent to the orchestrator, it compiles it into possible implementations. It does this by

validating and resolving the different primitives in the intent, for example checking that the ConnectionPoints

are defined and mapping them to actual nodes in the network graph. In the example of Mesh connectivity there

are likely multiple solutions that satisfy the intent, e.g.: using only the IP network, combining both IP and

Optical layers, etc. Possible solutions are derived and fed to the Multi-Layer Resource Allocation module which

maps them to the network topology and calculates their costs and performance (in terms of e.g. latency). If the

Intent contains Priority primitives, solutions can be ranked according to them and the best is forwarded to the

Abstraction and Configuration layer for installation in the network. If no solution satisfying all the constraints of

the incoming intent is found, then a negotiation with the application may begin, offering one or more solutions

that partially satisfy the request and letting it decide which, if any, best suits its needs .

4. STRATEGIES FOR APPLICATION-CENTRIC MULTI-LAYER RESOURCE ALLOCATION

The Multi-Layer Resource Allocation and the Online Planning modules are the core of the application -centric

Orchestrator. In concert with the other modules, they ensure that the network resources needed for the

applications are available and the network is run efficiently. To that end, the modules perform algorithmic

network optimization that relies on multi-layer strategies. In addition to application service requests, the

optimization process must take into account a particular internal objec tive function (such as minimum

wavelength or power usage), the features of the available equipment and the current network configuration. The

Orchestrator views the underlying network as two-layered: optical- and packet-based. Both layers have their own

requirements and unique features that, if exploited, allow for a more optimized network. While optimizing each

layer separately is simpler, jointly optimizing both layers can achieve better overall performance, to the ultimate

benefit of the both applications and network operators.

The general strategy for multi-layer resource allocation is to reuse existing routes in the network whenever

possible. Such a strategy allows for faster accommodation of intents, i.e. it minimizes connection set -up time. In

addition, reusing the existing packet routes and lightpaths minimizes the number of active router ports, which in

turn means reduced network power consumption [4]. Clearly, whenever existing routes do not satisfy the

requirements of an incoming service request the orchestrator will resort to setting up new routes. The two

network layers and the two main strategies (reuse a route vs. set up new route) in each layer thus define four

basic actions (Figure 3) that the resource allocation and planning modules can take. Similarly to [5] and [6], new

traffic will be routed on (i) an existing direct packet link from the ingress to egress points (ii), an existing packet

layer route (iii), a newly setup path in the optical layer, which is subsequently shown in the packet layer as a new

direct link, or (iv) a newly setup packet layer link (and a corresponding path in the optical layer) that allows a

partial packet layer route to reach the egress point. Since the general strategy is to reuse the routes that are

already available, network optimization algorithms should prefer actions (i) and (ii) whenever possible.

An inherent difficulty for the Multi-Layer Resource Allocation module, which must perform network

optimization in real time, is the lack of advance knowledge of service requests. The orchestrator has a number of

means to cope with this issue. Firstly, it can preserve some “high -quality” routes in the network for highly

constrained traffic, where strict requirements specify e.g. low latency. This implies the counter-intuitive action of

routing less sensitive traffic on paths that are longer, thus using more resources. A request for a low-latency

connection can then be accommodated on the unused shorter path. Secondly, in order to be operational the

network should have a few links in the packet layer, with corresponding lightpaths, set up before any constrained

requests are made to the orchestrator. In real network deployments this is likely to be true by default, since the

network is already carrying traffic before the orchestrator is made operational. Thirdly, since some applications

require traffic reliability in the form of backup routes in case of failure, th is backup bandwidth can be used to

accommodate service requests that cannot wait for new optical connections to be set up (such as in actions (iii)

and (iv) above). After the network has used the backup path for a new service request, the orchestrator must find

and/or set up an additional path to protect the traffic from failures (i.e., either an alternative backup path or a new

path for the new incoming traffic).

Figure 3. The four possible actions to set up a packet layer route from node A to node D. Solid lines show

established, and dotted lines show new packet layer links. Dashed lines show the chosen route for each case.

Lastly, the Online Planning module re-optimizes the network. Periodically, if the state of the network is s uch that

it could benefit from moving some traffic or lightpaths, the module calculates which to move where and how. A

further function of the module is to perform what-if calculations, useful to the network operator. Specifically, it

calculates the necessary network resources needed for a future set of requests, and the effects of network

upgrades or failures.

5. CONCLUSIONS

This paper outlines the problem of application-centric multi-layer transport network orchestration, and proposes

an SDN network orchestrator to tackle it. It gives an overview of its architecture and requirements, intent-based

north-bound interface, and application-centric multi-layer resource allocation algorithms. As a future work, the

authors will realize the proposed orchestrator software and test its efficiency and efficacy in both emulated and

real scenarios.

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the European Commission within the H2020

Research and Innovation program, ACINO project, Grant Number 645127, www.acino.eu.

REFERENCES

[1] R. Vilalta et al., “The need for a Control Orchestration Protocol in research projects on optical

networking,” in 2015 European Conference on Networks and Communications (EuCNC), 2015.

[2] Common Orchestration Protocol (COP): https://github.com/ict-strauss/COP

[3] P. Skoldstrom, “Initial release of DISMI”, in Zenodo. 2016, DOI:10.5281/zenodo.46586

[4] W. Hou, L. Guo and X. Wei, "Robust and Integrated Grooming for Power and Port -Cost-Efficient Design

in IP Over WDM Networks," Journal of Lightwave Technology, vol. 29, no. 20, pp. 3035 - 3047, 2011.

[5] H. Zhu, H. Zang, K. Zhu and B. Mukherjee, "A Novel Generic Graph Model for Traffic Grooming in

Heterogeneous WDM Mesh Networks," IEEE/ACM Transactions on Networking, vol. 11, no. 2, pp. 285 -

299, 2003.

[6] S. Martinez et al., "Assessing the Performance of Multi-Layer Path Computation Algorithms for different

PCE Architectures," in Optical Fiber Communication Conference and Exposition and the National Fiber

Optic Engineers Conference (OFC/NFOEC), 2013.

http://www.acino.eu/
https://github.com/ict-strauss/COP
http://dx.doi.org/10.5281/zenodo.46586

	1. INTRODUCTION
	2. OVERVIEW OF THE APPLICATION-CENTRIC MULTI-LAYER NETWORK ORCHESTRATOR
	3. INTENT-BASED NORTH-BOUND INTERFACE
	4. STRATEGIES FOR APPLICATION-CENTRIC MULTI-LAYER RESOURCE ALLOCATION
	5. CONCLUSIONS

