
Policy-based Restoration
in IP/Optical Transport Networks

M. Santuariα, T. Szyrkowiecβ , M. Chamaniaβ , R. Doriguzzi-Corinα, V. Lopezγ , D. Siracusaα
αCREATE-NET, βADVA Optical Networking SE, γTelefónica I+D

I. INTRODUCTION

Restoration in transport networks is typically facilitated
using reactive techniques at different layers, namely optical
and IP restoration [1]. Optical restoration involves re-routing
an existing optical connection (i.e., a lightpath) around a failure
(e.g. link, amplifier, switch and transponder failures) in the
optical layer. This strategy is efficient in terms of resource uti-
lization, as backup resources are reserved dynamically after the
failure and therefore are not blocked during normal operation.
However, equipment reconfiguration and power equalization
processes in the optical domain are relatively slow (order of
seconds), and are thus not suitable for time critical services.

IP restoration also re-computes path around failures (e.g.
IP links, router ports) and re-uses existing IP links to support
the restored traffic. Reconfiguration in IP is fast (less than 50
milliseconds), but requires that alternate paths have sufficient
capacity to support the re-routed traffic, which in turn may
imply blocking of resources in the optical domain, therefore
requiring additional active lightpaths.

The two restoration strategies present trade-offs in the
form of cost (additional lighpath provisioning vs. re-use of
existing lighpaths), responsiveness (seconds vs. milliseconds)
and offered capacity (same as primary lightpath vs. shared
spare capacity on the backup lightpath), and can complement
each other to cater to the needs of emerging high-bandwidth
services related to 5G and cloud applications. However, in or-
der to be effective, network intelligence is required to identify
the characteristics of a failure and the affected services, and
orchestrate restoration on the best-suited (IP/optical) layer.

This paper1 proposes the first demonstration of an
IP/Optical SDN control solution for transport networks, called
network orchestrator, which orchestrates IP or optical restora-
tion based on the policy explicitly requested by the client
application. The policy is communicated via intents, as part of
the constraints that must be satisfied for a service. The orches-
trator uses these intents to identify the restoration mechanism
to be employed in case of a failure. The proposed orchestration
solution allows the operator to effectively utilize network
resources while ensuring that the survivability constraints of
requested services are met.

II. ARCHITECTURE AND TESTBED OVERVIEW

The proposed network orchestrator is built on top of
the ONOS framework [2] and the core components of the
orchestrator are presented in Fig. 1. The orchestrator exposes a
North-Bound Interface (NBI) towards applications or Network
Management Systems (NMSs), giving them the possibility to
request network services with specific requirements (in this
case, the desired restoration strategy). Requirements, expressed

1This work is supported by the EU H2020 ACINO project, Grant Number
645127, www.acino.eu.

by means of intents, are then translated into service configura-
tions by the intent framework, which relies on the knowledge
of the IP/optical multi-layer topology. The South-Bound In-
terface (SBI) consists of the Providers and Protocols, as well
as the technology-specific Drivers (according to the ONOS
architecture), which extract information from the underlying
infrastructure to build the network topology. The SBI is also
responsible for pulling state changes and alarm notifications
from network and pushing configurations computed by the
orchestrator onto the network infrastructure.

J2

J3
A1

A3

A2

J1

Router

ROADM

North-bound Interface

South-bound Interface

Providers/ProtocolsNETCONF REST

DriversJUNIPER COP

OVC
1 2

1 2

1 2

1 2

1 2 3

1 2 3

Core
Intent Framework

Multi-layer Topology

Fig. 1: High level orchestrator architecture.

For the proposed demonstration, the ONOS intent compiler
has been modified to accommodate requests for IP or optical
restoration. A new ONOS driver has been implemented to
interface directly with the Juniper routers. The driver facilitates
the discovery of devices and supports alarms notification to
identify operational state changes in the IP network infras-
tructure. Configuration of IP routers is facilitated over the
NETCONF protocol. With respect to the optical domain, the
orchestrator interacts with the ADVA optical controller, called
OVC (Optical Virtualization Controller). New ONOS driver
and providers have been implemented to interact with the
OVC in order to discover devices and links, provide alarm
notifications and request the configuration of optical light-
paths. The orchestrator uses the Control Orchestration Protocol
(COP) [3][4] to communicate with the OVC, which exposes a
network model that is a subset of the one defined in the ONF
T-API [5] and supports provisioning of lightpaths in the optical
domain. A custom REST extension has also been developed
to provide alarm notifications from the optical infrastructure
to the orchestrator.



The demonstration will run on top of a physical IP/optical
testbed located in Telefónica premises in Madrid. The testbed
setup, as presented in Fig. 1, consists of 3 Juniper MX240
routers (J1, J2, J3) connected via multiple 1GBE and 10GBE
interfaces to 3 ADVA FSP3000 R7 WDM nodes (A1, A2,
A3). The WDM nodes have the same configuration with
directionless add/drop capabilities and are interconnected with
each other in a ring configuration. In Fig. 1, IP and optical
ports are numbered, while the color code (orange, blue, green)
identifies distinct wavelengths that are used on these interfaces.
Therefore, a lightpath can be established between J1/1 and J2/1
(orange), J2/3 and J3/2 (green), and any pair of interfaces J1/2,
J2/2 or J3/1 (blue), where Jx/y represents router Jx port y.
The testbed setup provides diversity with respect to optical
paths and capacity between any pair of routers.

III. DEMONSTRATION

In the demonstration we assume that an interconnection
between an IP router and a ROADM fails, generating a port
down alarm sent by the OVC and the IP router. According
to the policy specified on the installed intent, the orchestrator
attempts to restore the service at the optical or the IP layer.
The combined sequence diagrams are shown in Fig. 2, the
operations for optical and IP restorations are described below.

A. Optical Restoration

An intent requesting a service with a high bandwidth
demand might require the setup of a dedicated lightpath to
serve the traffic in case the existing connection fails. The intent
for the primary connection (Intent 1) is created between J1
and J2, using interfaces J1/1 and J2/1. Please note that the
installation of Intent 1 is not shown in the workflow presented
in Fig. 2 due to space constraints, but it will be part of the
demonstration. After the successful installation of the intent, a
failure is triggered on the link connecting J1/1 and A1/1, and
Port Down notifications are received by the orchestrator from
the OVC and J1. Based on these notifications, the orchestrator
identifies all affected intents, and recompiles the intent for the
failed services (only Intent 1, in this case). The intent compiler
identifies an alternate optical path that is available between J1
and J2 using interfaces J1/2 and J2/2, and initializes the setup
of the backup connection. The orchestrator triggers the creation
of new lightpath between the optical ports connected to the
routers, which is translated into configuration commands in the
optical domain. As soon as the lightpath setup is completed, the
orchestrator initializes the configuration of the new routes on
J1 and J2. The successful setup of routes finalizes the optical
restoration process.

B. IP Restoration

Operators may require to reroute best-effort services over
existing IP links in case of failure. In this second scenario,
a full mesh of IP links is established between J1, J2 and
J3: Intent 1 (J1/1 - J2/1), Intent 2 (J1/2 - J3/1), Intent 3
(J3/2 - J2/3). In particular, Intent 1 selects IP restoration
policy (the policy for the other intents is not relevant for
the demonstration). The initial installation of intents is not
shown in Fig. 2, but it will be part of the demonstration. After
the successful installation of the intents, a failure is again
triggered on the link connecting J1/1 and A1/1, leading to
Port Down notifications. These notifications are received by
the orchestrator, causing the failure of the IP link between

Fig. 2: Combined sequence diagrams for the optical and IP
restoration scenarios.

J1 and J2. Based on the policy defined in the failed intent
(Intent 1), the intent compiler is constrained to re-use existing
IP links to serve the traffic. As a result, restoration is performed
by configuring static routes on the IP routers in order to re-
route the traffic from J1 to J2 via J3 and vice versa. However,
if either Intent 2 or Intent 3 are not installed (i.e. there is
no connectivity at the IP layer after the failure), the Intent 1
recompilation fails, as the setup of a new optical link is not
supported for this best-effort service.

IV. CONCLUSION

We presented a network orchestrator for multi-technology
IP/optical transport networks and demonstrated its capability to
apply policies defined in service requests to dynamically per-
form restoration at the IP or optical layer after a failure occurs.
The capability to dynamically evaluate and perform restoration
on a per-service level is essential for the effective utilization of
network resources in the next-generation transport networks.

REFERENCES

[1] O. Gerstel et al., “Multi-layer capacity planning for IP-optical networks,”
IEEE Communications Magazine, vol. 52, no. 1, pp. 44–51, 2014.

[2] P. Berde et al., “ONOS: Towards an Open, Distributed SDN OS,” in
HotSDN, 2014.

[3] R. Vilalta et al., “The need for a Control Orchestration Protocol in re-
search projects on optical networking,” in Networks and Communications
(EuCNC), 2015 European Conference on, 2015, pp. 340–344.

[4] “Control Orchestration Protocol,” https://github.com/ict-strauss/COP.
[5] ONF, “Functional Requirements for Transport API,” v16, 2015.


