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ABSTRACT 
This work presents and implements Quantum Abstraction Interface (QuAI). QuAI is integrated in an SDN agent 
to enable the vendor agnostic configuration of QKD devices. The work demonstrates the framework to provide a 
flexible procedure to integrate QKD devices in production networks. 
 
Keywords: Quantum Key Distribution, Software-Defined Networking, Application Program Interface 

1. INTRODUCTION 
Quantum communications is the most mature area of the new generation of quantum technologies. In particular, 
Quantum Key Distribution (QKD) [1,2] is at the point in which devices are already available in the market. This 
technology allows the creation of very high security symmetric keys at the ends of a quantum channel -a channel 
that allows the transmission of quantum signals-. The security of these keys is granted by the properties of the 
nature and do not rely on any computational assumptions, as is common in the public key cryptosystems. The 
required quantum channel is usually implemented using an optical fiber. The fact that quantum communications 
require the transmission and detection of single quantum signals implies that the co-propagation with classical 
signal, with about 108 photons per pulse, is very difficult. Consequently, the usual choice has been to use dark 
fiber for the quantum channel. This is very expensive and, from a market perspective, is a no-go, since it requires 
the building of a special, separated network, for the quantum communications alone.  
However, mixing quantum and classical signals is possible under controlled conditions. The typical optical 
networks, designed with other parameters in mind, rarely allowed to fulfill the requirements to share the optical 
network between classical and quantum signals. This has started to change with the advent of the Software 
Defined Networking (SDN) paradigm. SDN has programmability at its base and provide a level of flexibility 
that allows to dynamically control the network such that the requirements needed to transmit quantum-level 
signals can be fulfilled.  To do this, it is not only necessary to have a flexible SDN, but also to provide the QKD 
systems with some capability such that they can be controlled from the network.  
The SDN scheme permits for the first time to produce a real quantum-classical integration as opposed to an ad-
hoc one, in which every link has to be specifically adapted for quantum use. This approach has been recently 
demonstrated [3] and several, industry-driven, use cases have been implemented. However, the devices have 
been designed for a simple point-to-point, directly connected, link. This, and the increasing number of 
companies building QKD devices, make difficult to fulfill in a general way the need to drive the QKD systems 
from the network.  
In this paper we present a way to address this problem in the form of a hardware abstraction layer that we call 
Quantum Abstraction Interface (QuAI). QuAI allows that any manufacturer can easily export the network 
capabilities of their QKD devices to an SDN-like network. It uses standard tools and mechanisms to accomplish 
its objectives. The availability of QuAI will facilitate to QKD manufacturers to integrate their devices in the 
communications network, a must for this technology to find widespread use. 

2. QUANTUM ABSTRACTION INTERFACE 
The Quantum Abstraction Interface describes a minimal interface to setup 
and communicate with a QKD device. Note that this 

Abstraction Interface is running 
inside the Agent, which could be 
executed inside the QKD device or 
in a separated process in another 
device, following a disaggregated 
approximation, leaving how this 
interface interact with the QKD 
device implementation dependent. 
 

 

QuAI Interface { 
  REGISTER(deviceId, URI) return boolean; 
  SET_ATTRIBUTE(deviceId, attribute, value) return boolean; 
  GET_ATTRIBUTE(deviceId, attribute) return value; 
             REMOVE(deviceId) return boolean; 

} 

 

Fig. 1. QuAI Application Interface 



 
 
 The QuAI interface is designed to be simple yet powerful and open interface oriented, isolating low level details 
of the Quantum device. Following this approximation, we decide to use YANG models, as it is “de facto 
standard” to define open interfaces device oriented.  
The QuAI API is formed by four functions with a minimal set of parameters on each call as you can see in Fig. 
1. Here we present the details of the Application Interface: 
 
• REGISTER: This function registers a new QKD device with a specific deviceId, that represents the QKD 

device using URI schemes inside the network. This function returns a boolean value depending on the 
success or failure setting up the device. If the function is successful, then an initial set of parameters needs 
to be sent to the device to make it work correctly. 

• SET_ATTRIBUTE: Set a value to an individual attribute on certain QKD device. The attribute is specified 
as a string, that is defined in the YANG model that supports the QKD System. That approximation, makes 
the QuAI easy to implement on the QKD device, due to only a simple string needs to be detected on the 
QKD device side, and after that, the appropriate system call is executed with the associated value. 

• GET_ATTRIBUTE: Return the current value of a specific attribute of certain QKD device. The attribute is 
specified again as a simple string extracted directly from the YANG model. 

• REMOVE: This function removes a QKD device from the node. 

This simple interface collects a minimal set of calls to communicate with QKD devices in a generic way. A 
typical approximation followed by vendors to interact with their QKD device consists on the use of specific 
adaptors to interact with specific devices, as you can see on Fig. 2, but this approximation makes difficult and 
hardly device dependent the integration of the devices into network infrastructures. Instead of that, the 
architecture presented on this paper is based on open interfaces, that means that if the Agent and the QKD device 
are model compliant, they both basically talks the same language, easing the integration of the device in the 
network.  

Nevertheless, the extraction of parameters defined on the model to send to QuAI are not direct. In that sense, we 
propose the Quantum Abstraction Manager (QuAM), a module that acts as a bridge between the model and the 
QuAI interface. This module implements a recursive traverse of the model, collecting the attributes and their 
corresponding values to transform this information into QuAI calls, for example, applying the successive 
SET_ATTRIBUTE calls over the QKD device, making QuAM an adaptor model driven, as you can see on Fig. 
3.  

 
Fig. 2 Integration model based on adaptors per vendor  

Fig. 3 Integration model based on Quantum Abstraction Interface 

Note that the QuAM module is model independent and at the same time, this module could receive the data from 
the model from different locations, for example from a simple RPC, a database or directly from a specific 
location inside the infrastructure. 

3. SOFTWARE ARCHITECTURE FOR QUAI INTEGRATION 

Nowadays, the integration of platforms is aligned with the deployment of a compatible SDN solution. The QuAI 
framework for this work is deployed in a modular environment that considers the support for NETCONF/Yang 
models. Fig. 4 represents the software architecture for the prototype. QuAI resides in the core of the developed 
agent and provides the interface to enable the adaptation of the configuration to the vendor dependent 
commands. On the other hand, the interface to the SDN controller is a NETCONF server [4], which provides the 
commands to retrieve the QKD status and the configure the device. NETCONF defines three datastores: startup, 
candidate and running [4]. The startup configuration is the initial status for the device after its installation or 
reboot. The candidate configurations are the propose configuration from an external entity like the SDN 



controller. Finally, the running configuration is the real configuration of the device. Every time that the SDN 
controller requests to modify the status of the device, a candidate configuration is created in the datastore. Each 
startup or candidate configurations are taken by the Quantum Abstraction Manager (QuAM). QuAM process 
translate the configuration into QuAI calls to create a running configuration. Therefore, any candidate or startup 
configuration is moved to running by QuAM, once the device has this configuration. 

So far, all description of the agent is model agnostic. On the startup process, the agent takes as a parameter 
which is the information model to be used. These YANG models enable the agent to validate the configuration 
against the model and to facilitate the utilization of other YANG models. Similarly, the software architecture is 

designed to be protocol agnostic. As an example, 
an agent can be started with ETSI QKD 004 
model [5] or ETSI QKD 015 model [6]. QuAI will 
be limited to the parameters in YANG model but 
provides a solution to operate with both interfaces. 
Similarly, this work considers NETCONF, but a 
development could be done with a gNMI or 
RESTCONF interface, providing a server that will 
create datastores that the QuAM will consume 

 

4. EXPERIMENTAL SETUP AND 
RESULTS 

Our experimental setup follows a disaggregated approximation, where the Controller, the Agent and the 
simulated QKD Systems are separated process. The Controller acts as a client of a NETCONF server that runs 
inside the Agent, both of them are ETSI QKD 015 compliant and QuAM and the QuAI runs as a logic part inside 
the Agent.  

The experiment shows how to register and configure a new QKD device. This process starts with a standard 
NETCONF EDIT_CONFIG RPC sent by the Controller to the Agent. The content of this RPC (Fig. 5a) is then 
stored in the candidate datastore of the NETCONF Server, where QuAM collects the new QKD interface 
configuration to adapt it into QuAI calls (Fig. 5b). The QuAI functions are implemented as raw socket 
communication for illustrative purposes. Each QuAI call generates a response on the QKD simulated device 
(Fig. 5c), if all responses are succeeded, the new configuration is stored in the running datastore and standard 
OK NETCONF RPC is sent to the Controller. Fig. 5d is an example of the QuAI call SET_ATTRIBUTE 
package travelling through the network.  

 

 
Fig. 5 a) Edit_config from controller to agent and reply. b) QuAM extraction from candidate datastores and QuAI calls. c) 
QKD system applying QuAI calls and answer states, d) Example of QuAI SET_ATTRIBUTE call through the network. 
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Fig. 4. Modules representation for the Software Architecture for QuAI 



5. CONCLUSIONS 
The main contribution of this paper is the definition of the Quantum Abstraction Interface (QuAI). QuAI is not 
just defined, but also integrated in an SDN agent to create a flexible procedure to integrate QKD devices in 
production networks. The demonstrations validate QuAI concept and its capability to configure QKD devices in 
a vendor agnostic fashion. 
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