
Quantum Abstraction Interface: facilitating integration of QKD
devices in SDN networks

Ruben B. Mendez1, Juan P. Brito1, Rafael J. Vicente1, A. Aguado1, Antonio Pastor2, Diego Lopez2, V.
Martin1, Victor Lopez2

1Center for Computational Simulation, Universidad Politécnica de Madrid, Madrid, Spain
2Telefonica gCTIO/I+D, Madrid, Spain

ABSTRACT
This work presents and implements Quantum Abstraction Interface (QuAI). QuAI is integrated in an SDN agent
to enable the vendor agnostic configuration of QKD devices. The work demonstrates the framework to provide a
flexible procedure to integrate QKD devices in production networks.

Keywords: Quantum Key Distribution, Software-Defined Networking, Application Program Interface

1. INTRODUCTION
Quantum communications is the most mature area of the new generation of quantum technologies. In particular,
Quantum Key Distribution (QKD) [1,2] is at the point in which devices are already available in the market. This
technology allows the creation of very high security symmetric keys at the ends of a quantum channel -a channel
that allows the transmission of quantum signals-. The security of these keys is granted by the properties of the
nature and do not rely on any computational assumptions, as is common in the public key cryptosystems. The
required quantum channel is usually implemented using an optical fiber. The fact that quantum communications
require the transmission and detection of single quantum signals implies that the co-propagation with classical
signal, with about 108 photons per pulse, is very difficult. Consequently, the usual choice has been to use dark
fiber for the quantum channel. This is very expensive and, from a market perspective, is a no-go, since it requires
the building of a special, separated network, for the quantum communications alone.
However, mixing quantum and classical signals is possible under controlled conditions. The typical optical
networks, designed with other parameters in mind, rarely allowed to fulfill the requirements to share the optical
network between classical and quantum signals. This has started to change with the advent of the Software
Defined Networking (SDN) paradigm. SDN has programmability at its base and provide a level of flexibility
that allows to dynamically control the network such that the requirements needed to transmit quantum-level
signals can be fulfilled. To do this, it is not only necessary to have a flexible SDN, but also to provide the QKD
systems with some capability such that they can be controlled from the network.
The SDN scheme permits for the first time to produce a real quantum-classical integration as opposed to an ad-
hoc one, in which every link has to be specifically adapted for quantum use. This approach has been recently
demonstrated [3] and several, industry-driven, use cases have been implemented. However, the devices have
been designed for a simple point-to-point, directly connected, link. This, and the increasing number of
companies building QKD devices, make difficult to fulfill in a general way the need to drive the QKD systems
from the network.
In this paper we present a way to address this problem in the form of a hardware abstraction layer that we call
Quantum Abstraction Interface (QuAI). QuAI allows that any manufacturer can easily export the network
capabilities of their QKD devices to an SDN-like network. It uses standard tools and mechanisms to accomplish
its objectives. The availability of QuAI will facilitate to QKD manufacturers to integrate their devices in the
communications network, a must for this technology to find widespread use.

2. QUANTUM ABSTRACTION INTERFACE
The Quantum Abstraction Interface describes a minimal interface to setup
and communicate with a QKD device. Note that this

Abstraction Interface is running
inside the Agent, which could be
executed inside the QKD device or
in a separated process in another
device, following a disaggregated
approximation, leaving how this
interface interact with the QKD
device implementation dependent.

QuAI Interface {
 REGISTER(deviceId, URI) return boolean;
 SET_ATTRIBUTE(deviceId, attribute, value) return boolean;
 GET_ATTRIBUTE(deviceId, attribute) return value;
 REMOVE(deviceId) return boolean;

}

Fig. 1. QuAI Application Interface

 The QuAI interface is designed to be simple yet powerful and open interface oriented, isolating low level details
of the Quantum device. Following this approximation, we decide to use YANG models, as it is “de facto
standard” to define open interfaces device oriented.
The QuAI API is formed by four functions with a minimal set of parameters on each call as you can see in Fig.
1. Here we present the details of the Application Interface:

• REGISTER: This function registers a new QKD device with a specific deviceId, that represents the QKD

device using URI schemes inside the network. This function returns a boolean value depending on the
success or failure setting up the device. If the function is successful, then an initial set of parameters needs
to be sent to the device to make it work correctly.

• SET_ATTRIBUTE: Set a value to an individual attribute on certain QKD device. The attribute is specified
as a string, that is defined in the YANG model that supports the QKD System. That approximation, makes
the QuAI easy to implement on the QKD device, due to only a simple string needs to be detected on the
QKD device side, and after that, the appropriate system call is executed with the associated value.

• GET_ATTRIBUTE: Return the current value of a specific attribute of certain QKD device. The attribute is
specified again as a simple string extracted directly from the YANG model.

• REMOVE: This function removes a QKD device from the node.

This simple interface collects a minimal set of calls to communicate with QKD devices in a generic way. A
typical approximation followed by vendors to interact with their QKD device consists on the use of specific
adaptors to interact with specific devices, as you can see on Fig. 2, but this approximation makes difficult and
hardly device dependent the integration of the devices into network infrastructures. Instead of that, the
architecture presented on this paper is based on open interfaces, that means that if the Agent and the QKD device
are model compliant, they both basically talks the same language, easing the integration of the device in the
network.

Nevertheless, the extraction of parameters defined on the model to send to QuAI are not direct. In that sense, we
propose the Quantum Abstraction Manager (QuAM), a module that acts as a bridge between the model and the
QuAI interface. This module implements a recursive traverse of the model, collecting the attributes and their
corresponding values to transform this information into QuAI calls, for example, applying the successive
SET_ATTRIBUTE calls over the QKD device, making QuAM an adaptor model driven, as you can see on Fig.
3.

Fig. 2 Integration model based on adaptors per vendor

Fig. 3 Integration model based on Quantum Abstraction Interface

Note that the QuAM module is model independent and at the same time, this module could receive the data from
the model from different locations, for example from a simple RPC, a database or directly from a specific
location inside the infrastructure.

3. SOFTWARE ARCHITECTURE FOR QUAI INTEGRATION

Nowadays, the integration of platforms is aligned with the deployment of a compatible SDN solution. The QuAI
framework for this work is deployed in a modular environment that considers the support for NETCONF/Yang
models. Fig. 4 represents the software architecture for the prototype. QuAI resides in the core of the developed
agent and provides the interface to enable the adaptation of the configuration to the vendor dependent
commands. On the other hand, the interface to the SDN controller is a NETCONF server [4], which provides the
commands to retrieve the QKD status and the configure the device. NETCONF defines three datastores: startup,
candidate and running [4]. The startup configuration is the initial status for the device after its installation or
reboot. The candidate configurations are the propose configuration from an external entity like the SDN

controller. Finally, the running configuration is the real configuration of the device. Every time that the SDN
controller requests to modify the status of the device, a candidate configuration is created in the datastore. Each
startup or candidate configurations are taken by the Quantum Abstraction Manager (QuAM). QuAM process
translate the configuration into QuAI calls to create a running configuration. Therefore, any candidate or startup
configuration is moved to running by QuAM, once the device has this configuration.

So far, all description of the agent is model agnostic. On the startup process, the agent takes as a parameter
which is the information model to be used. These YANG models enable the agent to validate the configuration
against the model and to facilitate the utilization of other YANG models. Similarly, the software architecture is

designed to be protocol agnostic. As an example,
an agent can be started with ETSI QKD 004
model [5] or ETSI QKD 015 model [6]. QuAI will
be limited to the parameters in YANG model but
provides a solution to operate with both interfaces.
Similarly, this work considers NETCONF, but a
development could be done with a gNMI or
RESTCONF interface, providing a server that will
create datastores that the QuAM will consume

4. EXPERIMENTAL SETUP AND
RESULTS

Our experimental setup follows a disaggregated approximation, where the Controller, the Agent and the
simulated QKD Systems are separated process. The Controller acts as a client of a NETCONF server that runs
inside the Agent, both of them are ETSI QKD 015 compliant and QuAM and the QuAI runs as a logic part inside
the Agent.

The experiment shows how to register and configure a new QKD device. This process starts with a standard
NETCONF EDIT_CONFIG RPC sent by the Controller to the Agent. The content of this RPC (Fig. 5a) is then
stored in the candidate datastore of the NETCONF Server, where QuAM collects the new QKD interface
configuration to adapt it into QuAI calls (Fig. 5b). The QuAI functions are implemented as raw socket
communication for illustrative purposes. Each QuAI call generates a response on the QKD simulated device
(Fig. 5c), if all responses are succeeded, the new configuration is stored in the running datastore and standard
OK NETCONF RPC is sent to the Controller. Fig. 5d is an example of the QuAI call SET_ATTRIBUTE
package travelling through the network.

Fig. 5 a) Edit_config from controller to agent and reply. b) QuAM extraction from candidate datastores and QuAI calls. c)
QKD system applying QuAI calls and answer states, d) Example of QuAI SET_ATTRIBUTE call through the network.

SDN Controller

Agent

SDN Server

QuAI

QuAM

QKD Dev. 1

QKD Dev. 2

QKD Dev. N

…

Data store

YANG Model

Netconf Server

Fig. 4. Modules representation for the Software Architecture for QuAI

5. CONCLUSIONS
The main contribution of this paper is the definition of the Quantum Abstraction Interface (QuAI). QuAI is not
just defined, but also integrated in an SDN agent to create a flexible procedure to integrate QKD devices in
production networks. The demonstrations validate QuAI concept and its capability to configure QKD devices in
a vendor agnostic fashion.

ACKNOWLEDGEMENTS
Authors would like to thank the Madrid’s regional government, Comunidad Autonoma de Madrid, for the
project Quantum Information Technologies Madrid, QUITEMAD+ S2013/ICE-2801, the FET Flagship on
Quantum Technologies, European Union Horizon 2020 research and innovation programme under grant
agreement No 820466: Continuous Variable Quantum Communications (CiViQ) and ICT grant agreement No
857156: Open European Quantum Key Distribution Testbed (OpenQKD) and the team of Transport and IP
Connectivity in Telefónica Spain for their support to this activity.

REFERENCES
[1] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography”, Rev. Mod. Phys. 2002, v. 74, pp.

145-195
[2] [2] V. Martin, et al., “Quantum Key Distribution” Wiley Encyclopedia of Electrical and Electronics

Engineering, Wiley pp 1-17, 2017.
[3] [3] A. Aguado, et al. “The Engineering of a SDN Quantum Key Distribution Network”, IEEE Comms.

Mag. July 2019
[4] [4] RFC 6241, Network Configuration Protocol (NETCONF)
[5] [5] ETSI GS QKD 004 V1.1.1 (2010-12). Group Specification. Quantum Key Distribution (QKD),

Application Interface.
[6] [6] ETSI GS QKD 015 Quantum Key Distribution (QKD); Quantum Key Distribution Control Interface for

Software Defined Networks (draft)

