

A Bayesian decision theory approach for the techno-economic analysis of an all-optical router

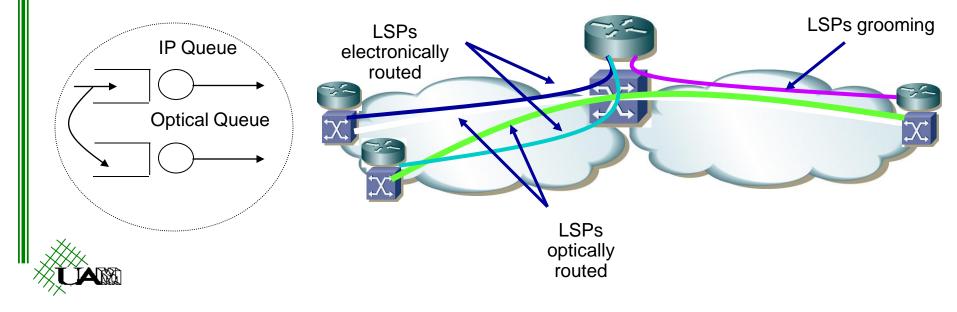
Víctor López¹, José Alberto Hernández¹, Javier Aracil¹, Juan P. Fernández Palacios² and Óscar González de Dios²

> ¹Universidad Autónoma de Madrid ²Telefónica I+D

Optical Networking Design and Modeling - ONDM 2007 Thursday, 31 May 2007

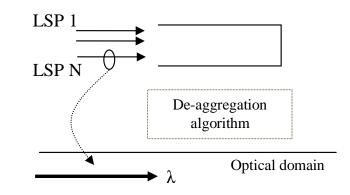
Multilayer Scenario

Techno-Economic Analysis


- Bayesian decisor
- Utility functions
- Cost functions

Experiments and results

- QoS parameters variation
- Relative cost variation
- Self-similarity impact


Multilayer scenario

- Current optical networks are migrating to an IP over WDM scenario.
- In such scenario, a multilayer-capable router has to decide whether to perform optical or electronic switching.

Multilayer scenario

- Which is the optimal decision to switch a new incoming LSP?
 - Electrical and optical resources vs. User Utility function

Proposal of a techno-economic model to help routers take the decision of optical or electronic switching of their LSPs.

Multilayer Scenario

Techno-Economic Analysis

- Bayesian decisor
- Utility functions
- Cost functions

Experiments and results

- QoS parameters variation
- Relative cost variation
- Self-similarity impact

Techno-economic analysis

There three key aspects in our model:

- Bayesian theory.
- Utility functions definition.
- Cost function definition.

Bayesian decisor

 Let N refer to the number of LSPs handled at a given random time by the multilayer router, the loss function is given by:

$L(d_i, x) = (C_e(i) + C_o(N - i)) - U(x), i = 1, ..., N, x > 0$

- Where:
 - Ce(i) and Co(i): cost associated to route i flows over the electrical or optical domain.
 - U(x): utility associated to a queuing delay of x units of time, experienced by the electronically switched LSPs.

Utility function definition

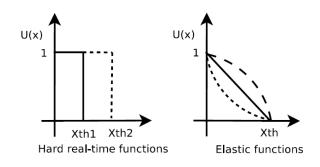
Definition:

• Utility associated to a queuing delay of x units of time, experienced by the electronically switched LSPs.

Assumptions:

- The queuing delay is assumed to be Weibull distributed. [5-7]
- In this light the probability distribution function is :

$$p(x) = (2-2H)C\frac{(C-m)^{2H}}{2K(H)^2am}(Cx)^{1-2H}\exp\left(-\frac{(C-m)^{2H}}{2K(H)^2am}(Cx)^{2-2H}\right)$$


– Where:

» m: input traffic mean, H: Hurst parameter, $am=\sigma^2$.

Utility function definition

- We define three utility functions:
 - Delay based utility
 - The utility function is opposite to the queuing delay x.
 - Hard real-time utility
 - Hard real-time applications are those which tolerate a T_{max} delay.
 - » ITU-T Y.1541 [10] and 3GPP S.R0035[11] defined service classes based on thresholds.
 - Elastic utility
 - Services, which are degraded little by little, till they reach T_{max.}
 - » Exponential function used to describe the degradation of elastic services [9].
 - » G.107 "E model" [12], for voice service degradation.

$$U_{delay}(x) = -x$$

$$U_{\rm step}(x) = \begin{cases} 1 & \text{if } x < x_p \\ 0 & \text{otherwise} \end{cases}$$

$$U_{\exp}(x) = \lambda e^{-\lambda x}$$

$$\lambda = \frac{1}{T_{\rm max}\log(1-0.9)}$$

Cost function definition

Definition:

• $C_e(i)$ and $C_o(N - i)$ represent the cost associated to switching / LSPs in the electronic domain and N - i in the optical domain.

$$C_e(i) = Ki$$

$$C_o(N-i) = R_{\rm cost}K(N-i)$$

• Where R_{cost} is the ratio at which the optical cost increases with respect to the electronic cost.

Bayes risk

The Bayes risk equals:

 $R(d_i) = E_x[L(d_i, x)] = (C_e(i) + C_o(N - i)) - E_x[U(x)]$

The goal is to obtain the optimal decision d* such that the Bayes risk R(d*) is minimum:

find d^* such that $R(d^*) = \min_{d_i, i=1,...,N} R(d_i)$

Multilayer Scenario

Techno-Economic Analysis

- Bayesian decisor
- Utility functions
- Cost functions

Experiments and results

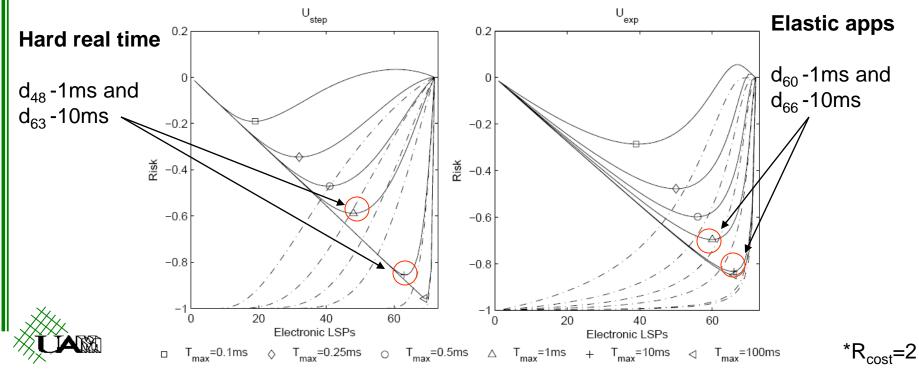
- QoS parameters variation
- Relative cost variation
- Self-similarity impact

Experiments and results

Scenario:

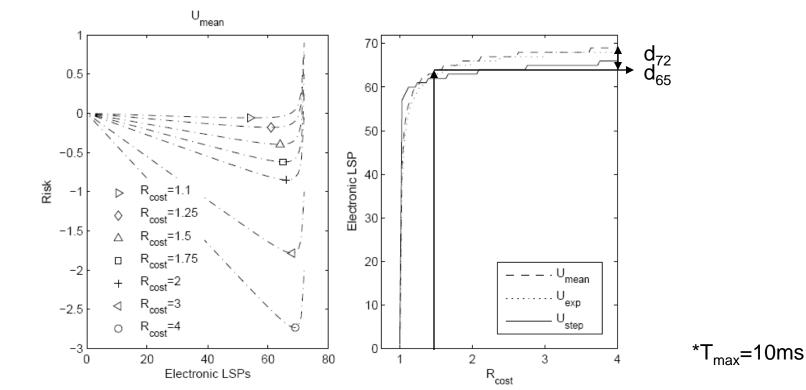
- 2.5 Gbps core network link.
- *N* = 72 standard VC-3 LSPs (*m* = 34.358 Mbps).
- Hurst parameter: *H* = 0.6 [13]
- $a = \sigma/m = 0.3$.
- K = 1/N, to normalized electrical cost in range [0, 1].

Experiments:


- **1. Range of QoS** (T_{max})
- **2. Range of cost** (R_{cost})
- 3. Range of Self-similarity (Hurst parameter)

QoS parameters

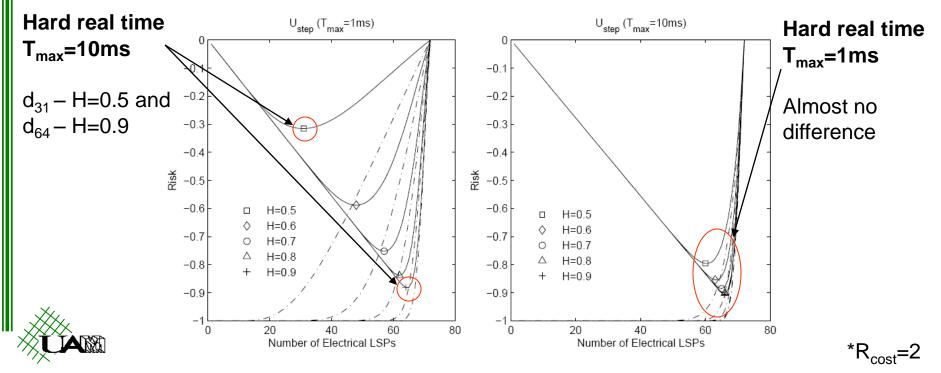
T_{max} variation from 0.1 ms to 100ms.*


- Optically-switched LSPs increase with T_{max} .
- Delay requirements for hard real-time applications are tighter than those for elastic applications.

Cost variation

R_{cost} variation from 1.1 to 4.*

- The more expensive optical switching is the less number of LSPs are switched optically.
- If $R_{\text{cost}} \ge 1.5$, the optimal decision does not depend on other parameters.



Self-similarity

Hard real time applications:

- H variation from 0.5 to 0.9.*
- Incoming traffic characteristics impact on the bayesian decisor depends on the QoS parameters.

In Hard real time with Tmax=1ms has no impact.

Multilayer Scenario

Techno-Economic Analysis

- Bayesian decisor
- Utility functions
- Cost functions

Experiments and results

- QoS parameters variation
- Relative cost variation
- Self-similarity impact

- Novel methodology based on the Bayesian decision theory for multilayer switching decision, QoS parameters and cost.
- The algorithm proposed is of low complexity, and can easily adapt to changing conditions.
- Future work:
 - Extensions of this mechanism, using end-to-end delay information through the whole network.

Thank you!! Questions?

This work has been funded by Programe e-Photon/ONe+ Network of Excellence (FP6-IST-027497).