

Flow-Aware Networking extension for IP over WDM environments

Víctor López, Cesar Cárdenas, Jose Alberto Hernández, Javier Aracil and Maurice Gagnaire Universidad Autónoma de Madrid, Spain Ecole Nationale Supérieure des Télécommunications

Multilayer Flow Aware Networking

Motivation:

- Flow Aware Networking is a promising technology for IP QoS.
- Core network is migrating to an IP over WDM architecture.

Multilayer Flow-Aware Networking

Objectives:

- Enhance FAN to work in a multilayer scenario.
- Search policies to route flows into the optical domain in an efficient way.

FAN Introduction

Flow-Aware Networking

FAN objectives:

- Minimize streaming flows delay.
- Assure a minimum rate to elastic flows.

Characteristics:

- Decisions: flow level
 - Although it works at packet level
- If a flow is accepted, it is protected.

Monitoring parameters

- Fair Rate (FR) estimation of the available bandwidth.
- Priority Load (PL) estimation of the load of the priority packets.

Flow-Aware Networking

Implicit classification:

- Streaming flows: rate less than Th_{FR}.
- Elastic flows: others.
- Admission control:
 - Check if the incoming packet flow is in the PFL.
 - Yes: it is served.
 - No: Check if PL < Th_{PL}and FR > Th_{FR}.

Flow-Aware Networking Queue

- There are two proposed FAN queues:
 - Priority Fair Queue (PFQ)
 PFQ is used in my simulations.
 - Priority Deficit Round Robin (PDRR)
- Both has the same performance, although PDRR computational time is lower.

FAN Scenario Examples

Underloaded Scenario

Elastic Loaded Scenario

In this situation:

- FR is out of range.
- PL is inside its range.

Streaming Loaded Scenario

FR

Admission

Region

С

 $\mathrm{Th}_{\mathrm{FR}}$

In this situation:

- PL is out of range.
- FR is inside its range.

FAN Extension

Multilayer FAN Node

- MFAN node is able to ask for extra optical resources.
- MFAN provides QoS at IP level using FAN.
- Assumptions:
 - If FAN queue can process the traffic it will be used.
 - FAN QoS is good enough.
 - Optical extra resources provides a best effort interface to the network without any extra QoS assurance.

Admission control in MFAN

- Add a monitor module to for optical queue performance.
- If the queue is under one threshold the flow is accepted.
- Which flow should be sent over the optical queue?
 - Policies.

Policies for MFAN

Policies:

- Newest-flow policy:
 - The incoming new flow is sent over the optical queue.
- Most-Active-flow policy:
 - When a packet has to be discarded, FAN discards the packets from the flow with a greatest backlog.
 - Send the most active flow over the optical queue.
 - Streaming flows are excluded.
- Oldest-flow policy:
 - Send the oldest active flow in the system.
 - Streaming flows are excluded.

Scenario definition

- Traffic input: [Kor05]
 - Flows arrivals (elastic and streaming) Poisson processes.
 - Streaming (phone connections)
 - Elastic (Frank Kelly "Stochastic Networks")
 - Streaming flows:
 - UDP
 - Exponentially distributed on- and off-periods (µ=500 ms) with an emission rate of 64 Kbps.
 - Rate: 32 Kbps (packets length 190 bytes)
 - Flows length 1 minute on average.
 - Elastic flows
 - TCP Reno
 - Packets of 1 KB
 - Flow size truncated Pareto distribution
 - » Shape 1.5, μ =25 packets, minimum 8 and maximum 1000 packets.
 - » From 8 Kb to 1 Mb.
 - Elastic flows count for 80% of overall traffic. [Kor05]
 - Link buffer: Q=RTTxC

Results

н

Metrics

- The metrics are related with the optical queue.
- FAN queue performance is equivalent with all policies.
- Metrics:
 - Rejection ratio.
 - Rejected flows/Incoming flows
 - Delay of streaming packets.
 - Delay in the optical queue.
 - Goodput for elastic flows.
 - Useful rate in bits per second.

Admission control

The admission control is an useful method to control the service degradation.

Newest-flow Policy

Implicit classification

- In Most-Active flow and Oldest flow policy, streaming flows are excluded.
- The reason is that in our scenario the system is congested due to elastic flows.
 - It is reasonable not to extract flows that are not congesting FAN queue.

Rejection ratio

Newest policy rejects more flows than the others.

• It does not use any information about the flows.

Flow proportion in the optical queue

- Depending on the policy the number of TCP and UDP flows in the optical queue is different:
 - Newest-flow policy \rightarrow greatest number of UDP flows
 - Most-Active-flow policy → greatest number of TCP flows

Streaming packets delay in Optical Queue

- Rejection ratio and number of UDP flows explain the policies performance.
 - The less UDP flows the smaller is the delay.

Elastic flows Goodput Optical Queue

Similar conclusions than previously can be achieved.

• Most-active-flow policy sends more TCP flows to the optical layer, so the goodput is lower than Oldest-flow policy.

Contributions

- The main contribution of this work is the enhancement of the FAN architecture in a multilayer scenario.
 - Keep FAN's Simplicity.
 - FAN monitoring parameters are used.
 - Admission control is maintained.
- Three policies proposes and evaluated:
 - The Oldest policy has shown a better performance.

