

Index

Towards Cloud Ready Transport Networks

Multi-layer Networks

Multi-layer restoration

Demonstrations

- 04
- ONE project
- O2 Germany field trial

Further steps

- Data plane integration
- SDN
- Integration with Elastic Networks

Final Remarks

01

Towards Cloud-Ready Transport Networks

Towards Cloud-Ready Transport Networks

L. M. Contreras, V. López, O. González de Dios, A. Tovar, F. Muñoz, A. Azañón, J.P. Fernández-Palacios, J. Folgueira: Towards Cloud-Ready Transport Networks, in IEEE Communications Magazine, September 2012, Vol. 50, Issue. 9, Pages. 48 - 55.

Cloud-ready Network Approach

Network Control

Flexible Transport Network

- The target is an E2E network able to perform automated connectivity control between end users and cloud data centers
- This innovative network model aims to:
 - Accelerate service provisioning and performance monitoring
 - Enable on-demand connectivity configurations (e.g bandwidth) by end users
 - ✓ Optimize both cloud costs and power consumption
 - ✓ Guarantee the required QoS/QoE (...) for real time and video services

02

Multi-layer networks

Independent Layers

Current Multilayer Coordination

Load balancing between IP/MPLS and WSON. High capacity flows (e.g between IP access and IP interconnection) are directly transported over WSON

Current multi-layer provisioning

Pending standardization

What do we want of a multi-layer network?

- Standard interface to configure the routers.
 - NETCONF is standard (RFC 6241), but data models are vendor dependent.
 - Openflow enables standard configuration of flow tables. Is it enough?
 - Interaction between the PCE and the VNTM for multi-layer networks.
 - An element is required to configure VNT to the upper layer through a standard interface.
 - Functional validation of the cooperation between Virtual Network Topology Manager (VNTM) and Path Computation Element (PCE), IPOP 2012.

Automated Multi-layer Provisioning

New IP Path Betweenn A and C

03

Multi-layer restoration

Multi-layer Restoration

- Multi-layer restoration consist on using the increased DWDM layer connectivity and dynamicity to recover both layer failures.
- Multi-layer restoration allows to increase availability due to the higher number of resources to drive traffic available.

"The Economics of Next-Gen ROADM Networks", Heavy Reading September 2012.

Multilayer restoration: Alternatives comparison

	1+1 Protection and Multilayer Restoration	1+1 Protection, multilayer restoration (additional router)	Multilayer restoration only
OPEX	Reduction	Highest	No change
CAPEX	No change	Increase	Reduction
Failure recovery time	1st failure: 50 ms 2nd failure: 1 minute (approx) without FRR	1 st failure: 50 ms 2 nd failure: 50 ms	1 st failure: 1 minute (approx) without FRR 2 nd failure: 1 minute (approx) without FRR

04

Demonstrations

FP7 STREP ONE Project

ONE project

- The project has three main contributions:
 - A Network Management Adapter
 - Semantic Adaptation
 - A Programmable Management Framework
- ONE adapter enables:
 - Dynamic IP service provisioning.
 - Automatic IP Offloading.
 - Multi-layer Restoration.

Building blocks

Example of ONE adapter operation – Automatic IP Link Provisioning

O2 Germany Field Trial

O2 Germany Field Trial

- Multi-layer operation is demonstrated in an O2 field trial with ONE adapter.
- Network scenario:
 - IP/MPLS equipment from Juniper (MX-240).
 - Optical transport equipment from ADVA.
 - UNI interface between Juniper and ADVA.
 - Multi-layer Manager
- The Multi-layer Manager is used for:
 - Supervise joint network configuration.
 - Automatic configuration based on network information.
 - Restoration under failure situation.

O2 Germany – Data Plane Topology

O2 Germany Field Trial - Tests

- Test Summary:
 - GMPLS path creation and deletion via UNI
 - Automatic IP Link Provisioning
 - Automatic IP Offloading
 - Multi-layer Restoration

05

Further steps

Multi-layer target architecture

- The target multi-layer control plane to enable automatic operation and coordinated protection is based on:
 - Hierarchical LSPs and Forwarding Adjacencies → Scalability.
 - Extended UNI interface:
 - UNI enables automatic transport connection set-up.
 - Extended UNI allows multi-layer information dissemination (TE-link, SRLGs, etc.), simplifying operation and resource utilization.
 - Multi-layer PCE → Enable scalable resource optimization and interconnection.
 - Configuration mechanisms enabling automated IP routers configuration according to the new physical topology (e.g NetConf, OpenFlow). VNTM is required for this operation

Data Plane Integration

Integrated model

Data Plane Integration - Results

 Based on current traffic in Telefonica of Spain network, traffic is increased each year 50%.

Integrated port cost is varied since its price is not clear

- CAPEX savings are great but... data plane integration implies:
 - Department integration.
 - Control plane interoperability between multiple optical equipment vendors.
 - And... optical compatibility of the integrated transponders so multiple vendors can use integrated transponders.

Multi-layer coordination will do this

No effort in industry so far...

Software Define Networks for Multi-layer Architectures

 SDN appears as the old promise of real-time programmability of network functionalities.

Integration with Elastic Networks

- The elastic optical network can be configured based on:
 - Monitoring probes
 - Network status
 - Service
- Configuration can be done using:
 - Control plane
 - Management plane

06

Final Remarks

Final Remarks

1

Savings

- Automated multilayer coordination enables:
 - Network resources optimization (CAPEX reduction)
 - Operation simplification (OPEX reduction)

2

ML Architecture

 Based on based on a combination of standardized elements such as: extended UNI, multilayer PCE and VNTM enable multilayer interworking in multivendor networks

3

Standardization

- Some standardization is required:
 - Extended UNI
 - VNTM
 - SDN?

Telefonica